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Chapter1 Introduction 

CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

In general, a Computer Aided Design (CAD) package has three components: a) Design, 
b) Analysis, and c) Visualization, as shown in the sketch. A brief description of these
components follows. 

a) Design: Design refers to geometric, i.e., 2-D and 3-D, including, drafting, part
creation, creation of drawings with various views of the part, assemblies of the parts,
etc.

b) Analysis: Analysis refers to finite element analysis, optimization, and other number
crunching engineering analyses. In general, a geometric model is first created and
then the model is analyzed for loads, stresses, moment of inertia, and volume, etc.

c) Visualization: Visualization refers to computer graphics, which includes: rendering a
model, creation of pie charts, contour plots, shading a model, sizing, animation, etc.

Design Analysis 

Visualization 

  Components of Computer Aided Design 
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Each of these three areas has been extensively developed in the last 30 years. Several 
books are written on each of these subjects and courses are available through the 
academic institutions and the industry. 

Most commercial CAD packages (software) consist of only a single component: design 
or analysis or visualization. However, a few of the vendors have developed an integrated 
package that includes not only these three areas, but also includes the manufacturing 
software (CAM). Due to the large storage requirement, integrated packages use either an 
UNIX workstation or a mainframe platform, and not the popular PC platform. With the 
improvement in PC computing speed, it’s only a matter of time before we see an 
integrated package run on a PC. CAD has revolutionized the modern engineering 
practice; small and large companies use it alike, spending several billion dollars for the 
initial purchase or lease alone. CAD related jobs are high in demand and the new 
graduates have advantage over their senior colleagues, as they are more up to date and 
more productive. 

 An example of Computer Aided Design is shown below.
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1.2 Computer Aided Manufacturing (CAM) 

CAM is the next stage of CAD. A part created in CAD can be downloaded and 
manufactured, without a human hand touching the part. The process is called CAM, and 
involves CAD, Networking, and NC programming, as shown below. 

CAD Networking 

NC programming 
Process planning 
Inspection and simulation 

 Components of Computer Aided Manufacturing 

Handbook on Computer Aided Design     by R. B. Agarwal  1-3 



Chapter1 Introduction 

1.3 Concurrent Engineering 

Concurrent Engineering is another powerful CAD concept that has evolved in the 90’s. 
According to this concept, there is an instantaneous communication between the 
designer, analyst, and manufacturing. Changes made at any of these work centers are 
immediately passed on to the others and the product is modified without delay. Often, the 
customer, management, and the marketing people join in and become part of the process. 
Concurrent engineering saves the valuable time and helps get the product out in the 
market quicker. Products that use to take years from the date of its concept to the actual 
production now take only a few weeks, and the final product is better and cost-effective. 

Some large organizations have invested in Rapid Prototyping process. In this process, the 
part is created by a CAD package and downloaded into the rapid prototyping machine; 
the machine immediately manufactures the part, using a plastic material. This is a good 
example of concurrent engineering, sometimes referred as Art to Part concept. 
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1.4 CAD/CAM History 

The concept of CAD and CAM is relatively new. The usage is linked with the 
development of computers. The actual application of CAD/CAM in industry, academia 
and government is only approximately 30 years old. Formal courses in CAD and Finite 
Element Analysis (FEA) were introduced in 1970’s. The major application thrust of CAD 
came in 1980’s, with the availability of PCs and workstations. In its early stage of usage, 
very few engineering companies could afford the expense of mainframe computers; 
however, PCs and workstations have evolved into affordable and adequate platform to 
support comprehensive CAD packages that initially were designed to run on the 
mainframe platform. A brief history of the evolution of CAD/CAM, according to the 
decade and the major CAD/CAM developments, is outlined below. 

1960’s 
• Development in Interactive computer graphics research
• Sketchpad system developed by Ivan Sutherland in 1962
• CAD term coined
• First major commercial CAD/CAM software available: CADAM by Lockheed, in 1965
• Bell Telephone’s  - Graphics 1 remote display system developed

1970’s 
• Application of CAM in government, industry and academia
• National organization formed
• Beginning of usage of computer graphics
• Turnkey system available for drafting
• Wireframe and surface software became available
• Mass property calculation and FEA software became available
• NC tape generating, verification, and integrated circuit software became available

1980’s 
• CAD/CAM used for engineering research and development
• New CAD/CAM theories and algorithms developed
• Integration of CAD/CAM
• Solid software became available
• Use of PCs and workstation began

1990’s 
• Concept of concurrent engineering developed
• Increased use of CAD/CAM on PCs and worksations
• Improvements in hardware and software
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1.5 CAD Hardware 
There are basically two types of devices that constitute CAD hardware: a) Input devices, 

and b) Output devices. A brief description follows. 

1.5.1 Input Devices 
These are the devices that we use for communicating with computer, and providing our 
input in the form of text and graphics. The text input is mainly provided through 
keyboard. For graphic input, there are several devices available and used according to the 
work environment. A brief description of these devices is given here. 

Mouse: This is a potentiometric device, which contains several variable resistors that 
send signals to the computer. The functions of a mouse include locating a point on the 
screen, sketching, dragging an object, entering values, accepting a software command, 
etc. Joystick and trackballs are analogous to a mouse device, and operate on the same 
principle. 

Digitizers: Digitizers are used to trace a sketch or other 2-D entities by moving a cursor 
over a flat surface (which contains the sketch). The position of the cursor provides a 
feedback to the computer connected with the device. There are electrical wires embedded 
in orthogonal directions that receive and pass signals between the device and the 
computer. The device is basically a free moving puck or pen shaped stylus, connected to 
a tablet. 

Light Pens: Lockheed’s CADAM software utilized this device to carry out the graphic 
input. A light pen looks like a pen and contains a photocell, which emits an electronic 
signal. When the pen is pointed at the monitor screen, it senses light, which is converted 
to a signal. The signal is sent to the computer, for determination of the exact location of 
the pen on the monitor screen. 

Touch Sensitive Screens: This device is embedded in the monitor screens, usually, in the 
form of an overlay. The screen senses the physical contact of the user. The new 
generation of the Laptop computers is a good example of this device. 

Other Graphic Input Devices: In addition to the devices described above, some CAD 
software will accept input via Image Scanners, which can copy a drawing or schematic 
with a camera and light beam assembly and convert it into a pictorial database.  

The devices just described are, in general, independent of the CAD package being used. 
All commercial CAD software packages contain the device drivers for the most 
commonly used input devices. The device drivers facilitate a smooth interaction between 
our input, the software, and the computer. An input device is evaluated on the basis of the 
following factors: 
• Resolution
• Accuracy
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• Repeatability
• Linearity

1.5.2 Output Devices 
After creating a CAD model, we often need a hard copy, using an output device. Plotters 
and printers are used for this purpose. A plotter is often used to produce large size 
drawings and assemblies, where as, a laser jet printer is adequate to provide a 3-D view 
of a model. Most CAD software require a plotter for producing a shaded or a rendered 
view. 
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1.6 CAD Software 

CAD software are written in FORTRAN and C languages. FORTRAN provides the 
number crunching, where as, C language provides the visual images. Early CAD 
packages were turnkey systems, i.e., the CAD packages were sold as an integrated 
software and hardware package, with no flexibility for using second vendor hardware 
(1970s and 80s). These systems were based on 16-bit word, and were incapable of 
networking. The modern CAD software utilizes the open architecture system, i.e., 
software vendors do not design and manufacture their own hardware. Third party 
software can be used to augment the basic CAD package. Most popular CAD package 
will facilitate integration of the Finite Element Analysis and other CAD software from 
more than one vendor. For example, IDEAS preprocessor can work with almost all the 
FEA packages for pre and post analyses.  

Networking is an important consideration in applications of CAD software. A model 
created by one engineer must be readily accessible to others in an organization, which is 
linked by a LAN or other means. The designer, analyst, management, marketing, vendor, 
and others generally share a model. This is the concurrent engineering in action, 
mentioned earlier. 

an example of CAD software is shown below,
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1.7 CAD Platform 

In general, we can run CAD software on three different CAD platforms: Mainframe, 
Workstation, and PC. When the CAD programs first became available, they could only 
be run on a mainframe computer. However, as the PCs have become faster and cheaper, 
almost all the CAD vendors have introduced a version of their CAD software that will 
effectively run on a Pentium or higher computer. Currently, the most popular platforms 
are PCs and Workstations. Popularity of Workstations stems from their ability to network 
easily with other computers, and also, due to their large memory storage capability. 
However, PC platform is still the most preferred medium for most engineers. Increasing 
popularity of the PC platform can be attributed to several factors, including, total user 
control, the speed, capability of storing large memory, ease of hardware upgrading and 
maintenance, and the overall reasonable cost. 

               CAD PLATFORMS 

MAINFRAME      WORKSTATIONS PCs 

Large Data storage Medium size data storage Limited data storage 
Networked Networked Can be networked   
Expensive Relatively inexpensive  Inexpensive 
Need interface language Runs on Unix  Run on MS-Windows 
No user control No user control User controlled  
Good for Large corporations Good for small companies Good for all users 
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1.8 CAD Evaluation Criteria 

In the current CAD market, ProE and AutoCAD are arguably the most dominating CAD 
software. AutoCAD is basically a 2-D program, with some capability to create 3-D 
models, where as, ProE is a truly 3-D CAD package. Besides these software, there are 
several other CAD software, listed in the previous section (Sec 1.3), that have sales 
exceeding $100 millions. No one CAD package is suitable for all the CAD users in the 
world. The product we are designing dictates the type of CAD package we need. A good 
CAD package includes good software, as well as, a compatible hardware. Following is a 
brief description of the general criteria for evaluating a CAD package. 

Hardware:  Most desirable features in a good hardware are: 
• Open architecture
• High speed, large storage
• Compact size
• Inexpensive components
• Inexpensive upgrading

Software:  In general, the most comprehensive software are written to satisfy almost all 
the modelling needs of a modeler, consequently, the software tend to be very complex 
and hard to learn. To create a simple model, we go through several unnecessary steps, 
and lack the intuitiveness of a simple, straightforward program. ProE is a good example, 
where we have to go through several layers of menus to create a simple solid. On the 
other hand, if we were to use a simpler CAD program, the same solid can be created by 
only a few simple commands. There are several other factors that we should consider 
when evaluating software. Following is a brief description of these factors. 

• Operating System: Unix or Windows/NT. PCs in general use Microsoft Windows,
where as, operating system for Workstations is Unix. For a large organization,
Workstations are preferable.

• User Interface: Most popular CAD software have menu driven commands, which is
preferable to the old system of non-menu driven, where user interface was completely
by responding to software commands. The most popular CAD programs work with
menu driven interface, with some input/action required through command prompts.

• Documentation and Support: Learning a software can be very difficult if the
software lacks good documentation. Documentation usually comes in the form of a
user’s manual, a tutorial book, commands manual, and on-line help. The recent trend
is to provide access to the above-mentioned documentation through the Internet, or
provide the manuals on a CD ROM. Some CAD vendors provide additional technical
support help through phone – ProE is a very good example of this type of support.

• Maintenance: Cost of the hardware and software upgrades can significantly impact
the small and medium size companies’ decision to choose one software over the
others. Most CAD vendors go through an upgrade, on the average, every two years.
Usually, hardware upgrade is not as frequent.
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• modelling Capabilities: In, general, a CAD software can be classified as either a 2-D
or a 3-D program. If we were basically involved in 2-D drawings, any well
established 2-D software, similar to AutoCAD would suffice our needs. On the other
hand, if we need to create 3-D models and assemblies, we will be better off with a 3-
D molder – ProE, SOLIDWORKS, etc.

• Ease of modelling: As a rule-of-thumb, a general, all-purpose type CAD software is much
more complex and difficult to learn than a special purpose CAD package.

• Interface with other CAD Packages and Data Transferability: A CAD package is used to
create models that will be used for analysis, manufacturing, or some other applications.
Therefore, a CAD software should be capable of transferring and accepting files from other
CAD or CAM programs, without this provision, the CAD program has only a very limited
use.

• Design Documentation: Besides creating a model, the software should be capable of
creating drawings, assemblies, dimensioning, various views (isometric, orthogonal, etc.),
labels and attributes, etc.
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1.9 Mechanical Engineering Applications of CAD 

Following is a brief description of the applications of CAD in mechanical engineering. 

• Two Dimensional Drafting: This is the most common use of a CAD package. 2-D
drawings are used for manufacturing a product.

• Report Generating: To generate reports and bill of materials. Spreadsheets and
word-processors can be linked to provide a report writing facility.

• 3-D modelling: To create the wireframe, surface and solid models. The 3-D models
are for concept verification, manufacturing, FEA, etc.

• Finite Element Analysis: FEA package is used for pre-processing, analysis, and
post-analysis of structures. For this application, a CAD package contains both the
modeling and analysis modules.

• Manufacturing: manufacturing software is usually called CAM, and contains CAD
software as one of the components. CAM software provides capabilities of carrying
out 2 and 3-axes machining.
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CHAPTER 2 

TWO-DIMENSIONAL TRANSFORMATION 

2.1 Introduction 

As stated earlier, Computer Aided Design consists of three components, namely, 
Design (Geometric), Analysis (FEA, etc), and Visualization (Computer Graphics). 
Geometric provides a mathematical description of a geometric object - point, line, conic 
section, surface, or a solid. Visualization dea   .ls with creation                             of                                                                                           visual effects
e.eg., creation of pie charts, contol plots, shading, animation, etc. Computer graphics
provides visual displays and manipulations of objects, e.g., transformation, editing, 
printing, etc. Fortran and visual C languages are used to effect these operations. 
Transformation is the backbone of computer graphics, enabling us to manipulate the 
shape, size, and location of the object. It can be used to effect the following changes in a 
geometric object:  
• Change the location
• Change the Shape
• Change the size
• Rotate
• Copy
• Generate a surface from a line
• Generate a solid from a surface
• Animate the object
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2.2 Two-Dimensional Transformation 

Geometric transformations have numerous applications in geometric, e.g., manipulation 
of size, shape, and location of an object. In CAD, transformation is also used to generate 
surfaces and solids by sweeping curves and surfaces, respectively. The term ‘sweeping’ 
refers to parametric transformations, which are utilized to generate surfaces and solids. 
When we sweep a curve, it is transformed through several positions along or around an 
axis, generating a surface. The appearance of the generated surface depends on the 
number of instances of the transformation. A parameter t or s is varied from 0 to 1, with 
the interval value equal to the fraction of the parameter. For example, to generate 10 
instances, the parameter will have a value t/10 or s/10. To develop an easier 
understanding of transformations, we will first study the two-dimensional transformations 
and then extend it to the study of three-dimensional transformations. Until we get to the 
discussion of surfaces and solids, we will limit our discussion of transformation to only 
the simple cases of scaling, translation, rotation, and the combinations of these. 
Applications of transformations will become apparent when we discuss the surface and 
solid modelling. 

There are two types of transformations: 

Modelling Transformation: this transformation alters the coordinate values of the object. Basic 
operations are scaling, translation, rotation and, combination of one or more of these basic 
transformations. Examples of these transformations can be easily found in any commercial 
CAD software. For instance, AutoCAD uses SCALE, MOVE, and ROTATE commands for 
scaling, translation, and rotation transformations, respectively. 

Visual Transformation: In this transformation there is no change in either the geometry or the 
coordinates of the object. A copy of the object is placed at the desired sight, without 
changing the coordinate values of the object. In AutoCAD, the ZOOM and PAN commands 
are good examples of visual transformation. 
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2.3 Basic modelling Transformations 

There are three basic transformations: Scaling, Translation, and Rotation. Other 
transformations, which are modification or combination of any of the basic transformations, are 
Shearing, Mirroring, copy, etc. 

Let us look at the procedure for carrying out basic transformations, which are based on 
matrix operation. A transformation can be expressed as 

[P*] = [P] [T] 

where,  [P*] is the new coordinates matrix 
[P] is the original coordinates matrix, or points matrix 
[T] is the transformation matrix 

With the z-terms set to zero, the P matrix can be written as,  

x1 y1      0 
 x2 y2      0 

[P] =         x3 y3      0 (2.1) 

 xn yn      0 

The size of this matrix depends on the geometry of the object, e.g., a point is defined by a single 
set of coordinates (x1, y1, z1), a line is defined by two sets of coordinates (x1, y1, z1) and (x2, y2, 
z2), etc. Thus a point matrix will have the size 1x3, line will be 2x3, etc. 

A transformation matrix is always written as a 4x4 matrix, with a basic shape shown below, 

1 0 0 0 
  [T]     =  0 1 0 0 (2.2) 

0 0 1 0 
0 0 0 1 

Values of the elements in the matrix will change according to the type of transformation being 
used, as we will see shortly. The transformation matrix changes the size, position, and orientation 
of an object, by mathematically adding, or multiplying its coordinate values. We will now 
discuss the mathematical procedure for scaling, translation, and rotation transformations. 
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2.4 Scaling 

In scaling transformation, the original coordinates of an object are multiplied by the given scale 
factor. There are two types of scaling transformations: uniform and non-uniform. In the uniform 
scaling, the coordinate values change uniformly along the x, y, and z coordinates, where as, in 
non-uniform scaling, the change is not necessarily the same in all the coordinate directions. 

2.4.1 Uniform Scaling 

For uniform scaling, the scaling transformation matrix is given as 

s 0 0 0 
 0 s 0 0 

[T]     =  0 0 s 0 (2.3) 
0 0 0 1  

Here, s is the scale factor. 

2.4.2 Non-Uniform Scaling 
Matrix equation of a non-uniform scaling has the form: 

sx 0 0 0 
0 sy 0 0  

[T]   =      0 0 sz 0 (2.4) 
      0 0 0 1 

where, sx, sx, sx are the scale factors for the x, y, and z coordinates of the object. 
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2.5 Homogeneous Coordinates 

Before proceeding further, we should review the concept of homogeneous coordinate system.  
Since the points matrix has three columns for the x, y, and z values, and a transformation matrix 
is always 4x4 matrix, the two matrices are incompatible for multiplication. A matrix 
multiplication is compatible only if the number of columns in the first matrix equals the number 
of row in the second matrix. For this reason, a points matrix is written as, 

 x1     y1   z1   1 
 x2     y2   z2   1 

[P]  =     x3     y3   z3  1 (2.5) 

xn     yn   zn   1 

Here, we have converted the Cartesian coordinates into homogeneous coordinates by adding a 4th 
column, with unit value in all rows. When a fourth column, with values of 1 in each row, is 
added in the points matrix, the matrix multiplication between the [P] and [T ] becomes 
compatible. The values (x1, y1, z1, 1) represent the coordinates of the point (x1, y1, z1), and the 
coordinates are called as homogeneous coordinates. In homogeneous coordinates, the points 
(2,3,1), (4,6,2), (6,9,3), (8,12,4), represent the same point (2,3,1), along the plane z = 1, z = 2, z = 
3, and z = 4, respectively. In our subsequent discussion on transformation, we will use 
homogeneous coordinates. 

Example 1: If the triangle A(1,1), B(2,1), C(1,3) is scaled by a factor 2, find the new coordinates 
of the triangle. 

Solution: Writing the points matrix in homogeneous coordinates, we have  

1 1 0 1 
[P] = 2 1 0 1 

1 3 0 1 
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and the scaling transformation matrix is, 2 0 0 0 
0 2 0 0 

[Ts]    = 0 0 2 0 
0 0 0 1 

The new points matrix can be evaluated by the equation 

[P*] = [P] [T], and by substitution of the P and T values, we get 

1 1 0 1  2 0 0 0  2 2 0 1 
P*   = 2 1 0 1  0 2 0 0   = 4 2 0 1 

1 3 0 1  0 0 2 0  2 6 0 1 
0 0 0 1 

               y 

Transformed by scaling 

Original 

      x 

Note that the new coordinates represent the original value times the scale factor. The old and the 
new positions of the triangle are shown in the figure. 
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2.6 Translation Transformation 

In translation, every point on an object translates exactly the same distance. The effect of a 
translation transformation is that the original coordinate values increase or decrease by the 
amount of the translation along the x, y, and z-axes. For example, if line A(2,4), B(5,6) is 
translated 2 units along the positive x axis and 3 units along the positive y axis, then the new 
coordinates of the line would be  

A’(2+2, 4+3), B’(5+2, 6+3) or 

A’(4,7), B’(7,9).  

The transformation matrix has the form: 

1 0 0 0 
0 1 0 0 

[Tt]     =  0 0 1 0 (2.6) 
x y 0 1 

where, x and y are the values of translation in the x and y direction, respectively. For translation 
transformation, the matrix equation is  

[P*] = [P] [Tt]                 (2.7) 

where,  [Tt] is the translation transformation matrix. 

Example 2: Translate the rectangle (2,2), (2,8), (10,8), (10,2) 2 units along x-axis and 3 
units along y-axis. 

Solution: Using the matrix equation for translation, we have 

[P*] = [P] [Tt],  substituting the numbers, we get 
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2 2 0 1  1 0 0 0  
[P*]     = 2 8 0 1  0 1 0 0  

10 8 0 1  0 0 1 0 
10 2 0 1  2 3 0 1 

 4 5 0 1 
4 11 0 1 

      = 12 11 0 1 
12  5 0 1 

Note that the resultant coordinates are equal to the original x and y values plus the 2 and 3 units 
added to these values, respectively. 
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2.7 Rotation 

We will first consider rotation about the z-axis, which passes through the origin (0,0,0), since it 
is the simplest transformation for understanding the rotation transformation. Rotation about an 
arbitrary axis, other than an axis passing through the origin, requires a combination of three or 
more transformations, as we will see later. 

When an object is rotated about the z-axis, all the points on the object rotate in a circular arc, and 
the center of the arc lies at the origin. Similarly, rotation of an object about an arbitrary axis has 
the same relationship with the axis, i.e., all the points on the object rotate in a circular arc, and 
the center of rotation lies at the given point through which the axis is passing. 

2.7.1 Derivation of the Rotation Transformation Matrix 
Using trigonometric relations, as given below, we can derive the rotation transformation 
matrix. Let the point P(x, y) be on the circle, located at an angle α, as shown. If the point 
P is rotated an additional angle θ, the new point will have the coordinates (x*, y*). The 
angle and the original coordinate relationship is found as follows. 

x = r cos α 
           Original coordinates of  point P. 

y = r sin α 

x* = rcos(α + θ) 
               The new coordinates. 

y*  = rsin(α + θ)

where, α is the angle 
between the line joining the initial position of the  
point and  the x-axis, and θ is the angle between  
the original and the new position of the point. 
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Using the trigonometric relations,  
we get, 

 x* = r (cosα cosθ - sinα sinθ) = x cosθ - y sinθ 
 y* = r (cosα sinθ + sinα cosθ) = x sinθ + y cosθ 

In matrix form we can write these equations as 

cosθ sinθ 
[x*  y*] =  [ x    y]  - sinθ cosθ (2.8) 

In general, the points matrix and the transformation matrix given in equation (2.8) are re-written 
as 

cosθ sinθ 0 0  
[x* y*   0   1]   =   [ x     y    0    1] -sinθ cosθ 0 0 

0  0  1 0 (2.9) 
0  0  0 1 

Thus, a point or any object can be rotated about the z-axis (in 2-D) and the new coordinates of 
the object found by the product of the points matrix and the rotation matrix, derived here. 

2.7.2 Rotation of an Object about an Arbitrary Axis 
Rotation of a geometric model about an arbitrary axis, other than any of the coordinate axes, 
involves several rotational and translation transformations. When we rotate an object about the 
origin (in 2-D), we in fact rotate it about the z-axis. Every point on the object rotates along a 
circular path, with the center of rotation at the origin. If we wish to rotate an object about an 
arbitrary axis, which is perpendicular to the xy-plane, we will have to first translate the axis to 
the origin and then rotate the model, and finally, translate so that the axis of rotation is restored 
to its initial position. If we erroneously use the equation (2.9) directly, to rotate the object about a 
fixed axis, and skip the translation of this point to the origin, we will in fact end up rotating the 
object about the z-axis, and not about the fixed axis.  

Thus, the rotation of an object about an arbitrary axis, involves three steps: 

Step 1: Translate the fixed axis so that it coincides with the z-axis 
Step 2: Rotate the object about the axis 
Step 3: Translate the fixed axis back to the original position. 
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Note: When the fixed axis is translated, the object is also translated. The axis and the object go 
through all the transformations simultaneously. 

We will now illustrate the above procedure by the following example. 

Example 3: Rotate the rectangle (0,0), (2,0), (2, 2), (0, 2) shown below, 300 ccw about  
its centroid and find the new coordinates of the rectangle.  

(0,2) (2,2) 

     (0,0)        (2,0) 

Solution: Centroid of the rectangle is at point (1, 1). We will first translate the centroid to the 
origin, then rotate the rectangle, and finally, translate the rectangle so that the centroid is restored 
to its original position. 

1. Translate the centroid to the origin: The matrix equation for this step is

 0 0 0 1  
[P*]1 = [P] [Tt],  where    [P]    =   2 0 0 1 

2 2 0 1 
0 2 0 1 

1 0 0 0 
0 1 0 0 

and  [Tt]     = 0 0 1 0 
-1 -1 0 1 
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2. Rotate the Rectangle 300 ccw About the z-axis: The matrix equation for this step is given
as

[P*]2 =  [P*]1 [Tr],  where, [P*]1 is the resultant points matrix obtained in step 1, and [Tr]  is the 
rotation transformation, where θ = 300 ccw. The transformation matrix is, 

cosθ sinθ 0 0  .866     .5 0  0 
 -sinθ cosθ 0 0  =  -.5        .866    0   0 

[Tr]θ  =     0   0 1 0 0          0     1   0 
   0        0 0 1 0          0     0   1 

3. Translate the Rectangle so that the Centroid Lies at its Original Position: The matrix
equation for this step is

   [P*]3 =  [P*]2 [T-t],   where  [T-t] is the reverse translation matrix, given as 

1 0 0 0 
[T-t]     = 0 1 0 0 

0 0 1 0 
1 1 0 1 

Now we can write the entire matrix equation that combines all the three steps outlined above. 
The equation is, 

[P*]  = [P] [Tt] [Tr] [T-t]   
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Substituting the values given earlier, we get, 

0 0 0 1  1 0 0 0  cos300 sin300 0 0  
[P*]  =  2 0 0 1  0 1 0 0  -sin300 cos300 0 0   x 

2 2 0 1  0 0 1 0  0  0  1 0 
0 2 0 1  -1 -1 0 1  1  1  0 1 

1 0 0 0 
0 1 0 0 
0 0 1 0 
1 1 0 1 

0.6340    -0.3660 0 1 
-0.3660     1.3660   0  1 

= 1.3660      2.3660        0    1 
-0.3660    1.3660         0    1 

The first two columns represent the new coordinates of the rotated rectangle. 
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2.8 Combined Transformations 

Most applications require the use of more than one basic transformation to achieve desired 
results. As stated earlier, scaling with an arbitrarily fixed point involves both scaling and 
translation. And rotation around a given point, other than the origin, involves rotation and 
translation. We will now consider these combined transformations. 

2.8.1 Scaling With an Arbitrary Point 
In uniform scaling, all points and their coordinates are scaled by a factor s.  Therefore, unless the 
fixed point is located at (0, 0), it will be moved to a new location with coordinates s-times x and 
s-times y. To scale an object about a fixed point, the fixed point is first moved to the origin and 
then the object is scaled. Finally, the object is translated or moved so that the fixed point is 
restored to its original position. The transformation sequence is, 

[P*] = [P] [Tt] [Ts] [T-t] 

Where,  [Tt] is the translation transformation matrix, for translation of the fixed point to 
the origin,  

  [Ts] is the scaling transformation matrix, and 

[T-t] is the reverse translation matrix, to restore the fixed point to its original      
position.  

Note: The order of matrix multiplication progresses from left to right and the order should not be 
changed. 

The three transformation matrices  [Tt] [Ts] [T-t] can be concatenated to produce a single 
transformation matrix, which uniformly scales an object while keeping the pivot point fixed. 
Thus, the resultant, concatenated transformation matrix for scaling is,  

1 0 0 0  s 0 0 0  1 0 0 0 
0 1 0 0  0 s 0 0  0 1 0 0  

[Ts]R  = 0 0 1 0  0 0 s 0  0 0 1 0 
 -x -y 0 1  0 0 0 1  x y 0 1 
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s  0  0  0 
0  s  0  0 

  =  0  0  s  0 (2.10) 
x-sx y-sy 0  1 

The concatenated equation can be used directly instead of the step-by-step matrix solution. This 
form is preferable when writing a CAD program. 

Example 4: Given the triangle, described by the homogeneous points matrix below, scale it by a 
factor 3/4, keeping the centroid in the same location. Use (a) separate matrix operation and (b) 
condensed matrix for transformation. 

2 2 0 1 
[P] =  2 5 0 1 

5 5 0 1 

Solution 

(a) The centroid of the triangle is at, 

x = (2+2+5)/3 = 3, and           y = (2+5+5)/3 = 4 or the centroid is C(3,4). 

We will first translate the centroid to the origin, then scale the triangle, and finally translate it 
back to the centroid. Translation of triangle to the origin will give,  

2 2 0 1  1 0 0 0   -1 -2 0 1 
 [P*]1 = [P] [Tt] = 2 5 0 1  0 1 0 0   = -1 1 0 1 

5 5 0 1  0 0 1 0  2 1 0 1 
-3 -4 0 1 

Scaling the triangle, we get, 

       -1 -2 0 1  .75  0 0 0  -0.75 -1.5 0   1 
 [P*]2 = [P*]1 [Ts] =  -1 1 0 1 0      .75 0 0    =  -0.75    0.75    0   1 

2 1 0 1 0 0   .75 0  1.5       0.75 0 1 
0  0 0 1 
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Translating the triangle so that the centroid is positioned at (3, 4), we get 

1 0 0 0 
-.75    -1.5   0      1 0 1 0 0  2.25  2.5 0 1  

 [P*] = [P*]2 [T-t]   =   -.75    .75     0      1 0 0 1 0  =    2.25  4.75    0    1 
 1.5     .75    0   1 3 4 0 1  4.5       4.75    0    1 

(b) The foregoing set of three operations can be reduced to a single operation using the 
condensed matrix with x = 3, and y = 4. See equation (2.10) on page 16. 

0.75            0 0 0 
2 2 0 1 0     0.75  0 0 

[P*] = [P] [Tcond]    =  2 5 0 1 0            0 0.75 0 
5 5 0 1 3-0.75(3)      4-0.75(4)      0 1 

2.25   2.5 0 1 
    = 2.25       4.75 0 1 

4.5   4.75 0 1 

2.8.2 Rotation About an Arbitrary Point (in xy-plane) 
In order to rotate an object about a fixed point, the point is first moved (translated) to the origin. 
Then, the object is rotated around the origin. Finally, it is translated back so that the fixed point 
is restored to its original position. For rotation of an object about an arbitrary point, the sequence 
of the required transformation matrices and the condensed matrix is given as, 

[Tcond] = [Tt] [Tr] [T-t]  or 
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1 0 0 0  cosθ sinθ 0 0  1 0 0 0 
0 1 0 0  -sinθ cosθ 0 0  0 1 0 0 

[Tcond] = 0 0 1 0  0  0  1 0  0 0 1 0  (2.11) 
-x -y 0 1  0  0  0 1  x y 0 1 

where, θ is the angle of rotation and the point (x, y) lies in the xy plane. 

Example 5: Rotate the rectangle formed by points A(1,1), B(2,1), C(2,3), and D(1,3) 300 ccw 
about the point (3,2). 

       y 

             D(1,3)  C  C (2,3) 

        .     . (3,2) 

x 
A(1,1)   B(2,1) 

Solution: We will first translate the point (3,2) to the origin, then rotate the rectangle about the 
origin, and finally, translate the rectangle back so that the original point is restores to its original 
position (3,2). The new coordinates of the rectangle are found as follows. 

[P*] = [P] [Tt] [Tr] [T-t] 

1 1 0 1  1 0 0 0  .866 .5 0 0  1   0  0 0 
2 1 0 1  0 1 0 0   -.5  .866 0 0  0   1  0 0 

= 2 3 0 1  0 0 1 0  0  0  1 0  0   0  1 0 
1 3 0 1  -3 -2 0 1  0  0  0 1  3   2  0 1 
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   1.77  .13  0 1 
   0.77  1.87 0 1  These are the new coordinates of the rectangle  

= 1.63 2.37 0 1 after the rotation. 
   2.63  0.63 0 1 
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2.9 Mirroring 

In modelling operations, one frequently used operation is mirroring an object. Mirroring is 
a convenient method used for copying an object while preserving its features. The mirror 
transformation is a special case of a negative scaling, as will be explained below.  

Let us say, we want to mirror the point A(2,2) about the x-axis(i.e., xz-plane), as shown in the 
figure. 

The new location of the point, when reflected about the x-axis, will be at (2, -2). The point 
matrix  [P*] = [2  -2]  can be obtained with the matrix transformation given below.  

y 
1 0 0 0 
0 -1 0 0   A(2, 2)   

[P*] =  [2   2   0   1] 0 0 1 0 
0 0 0 1 

x 

A’(2, -2) 
          =   [2 -2  0 1] 

The transformation matrix above is a special case of a non-uniform scaling with sx =1 and          
sy = -1. We can extend this concept to mirroring around the y, z, and any arbitrary axis, as will be 
explained in the following discussion. 
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2.9.1 Mirroring About an Arbitrary Plane 
If mirroring is required about an arbitrary plane, other than one defined by the coordinate axes, 
translation and/or rotation can be used to align the given plane with one of the coordinate planes. 
After mirroring, translation or rotation must be done in reverse order to restore the original 
geometry of the axis. 

We will use the figure shown below, to illustrate the procedure for mirroring an object about an 
arbitrary plane. We will mirror the given rectangle about a plane passing through the line AB and 
perpendicular to the xy-plane.  It should be noted that in each of the transformations, the plane 
and the rectangle have a fixed relationship, i.e., when we move the plane (or line AB, the 
rectangle also moves with it. A step-by-step procedure for mirroring the rectangle about the 
plane follows. 

Note: We are using line AB to represent the plane, which passes through it. Mirroring can be 
done only about a plane, and not about a line. 

Step 1: Translate the line AB (i.e., the plane) such that it passes through the origin, as shown by 
the dashed line. 

B  

              y 

               A 

x

Step 2: Next, rotate the line about the origin (or the z-axis) such that it coincides with x or y     
            axes (we will use the x-axis). 

Step 3: Mirror the rectangle about the x-axis. 

Step 4: Rotate the line back to its original orientation. 

Step 5: Translate the line back to its original position. 
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The new points matrix, in terms of the original points matrix and the five transformation 
matrices is given as, 

[P*] = [P] [Tt] [Tr] [Tm] [T-r] [T-t] (Note: A negative sign is used in the subscripts  
          to indicate a reverse transformation).  

Where, the subscripts t, r, and m represent the translation, rotation, and mirror operations, 
respectively. 
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CHAPTER 3 

THREE-DIMENSIONAL TRANSFORMATION 

3.1 Introduction 

A three-dimensional object has a three-dimensional geometry, and therefore, it 
requires a three-dimensional coordinate transformation. A right-handed 
coordinate system is used to carry out a 3-D transformation.  

The scaling and translation transformations are essentially the same as two-
dimensional transformations. However, the points matrix will have a non-zero 3rd 
column. Additionally, the transformation matrices contain some non-zero values 
in the third row and third column, as shown below. 

A general scaling transformation matrix is given as: 

sx 0 0 0 
0 sy 0 0 

     [Ts]  = 0 0 sz 0 
0 0 0 1   (3.1) 

Where, sx, sy,  sz  are scale factors along x, y, and z-axes, respectively. 

Translation Transformation matrix: 1 0 0 0 
0 1 0 0 

[Tt]  = 0 0 1 0  (3.2) 
x y z 1 
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3.2 Rotation Transformation 

The two-dimensional rotation transformation is in reality a special case of a three-
dimensional rotation about the z-axis. We will denote it by [Trz], where, the second 
subscript z indicates rotation about the z-axis. Similarly, rotation about the x and y-axes 
are denoted as [Trx], and [Try], respectively. The transformation matrices are given below. 

cosθ sinθ  0 0 
-sinθ cosθ 0 0 

[Trz]  =  0  0  1 0 (3.3) 
0  0  0 1 

1  0  0  0 
0  cosθ sinθ  0 

[Trx]   = 0 -sinθ cosθ 0 (3.4) 
0  0  0  1 

cosθ 0  -sinθ 0 
0  1  0  0 

 [Try]  = sinθ  0  cosθ 0 (3.5) 
0  0  0  1 

We will now present some examples of 3-D transformations. 
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Three-dimensional Scaling Example 

Example 1: The coordinates of a cube are given below. Scale the cube uniformly by1/2. 

0 0 0 1 
2 0 0 1 
2 2 0 1 
0 2 0 1 

[P]  = 0 0 2 1 
2 0 2 1 
2 2 2 1 
0 2 2 1 

Solution: The new coordinates of the cube are found by the product of the points matrix 
and the scaling matrix, 

0 0 0 1 0 0 0 1 
2 0 0 1 1 0 0 1 
2 2 0 1 1 1 0 1

[P*]  = [P] [Ts] = 0 2 0 1  ½ 0 0 0  0 1 0 1 
0 0 2 1  0 ½ 0 0      = 0 0 1 1 
2 0 2 1  0 0 ½ 0  1 0 1 1 
2 2 2 1  0 0 0 1  1 1 1 1 
0 2 2 1 0 1 1 1 

Three-Dimensional Rotation Example 

Next, we will consider rotation about the x and y-axes. Note that the expression for 
rotation about the y-axis has a negative sign associated with the sinθ term in the first row 
(unlike the x and z-axes rotation, where the negative sign is associated with the sinθ term 
in the second and the third rows, respectively). Also, the right-hand-thumb rule must be 
followed when applying the value of angle θ. For example, if the angle of rotation is 
given as 300 clockwise, the value used in the Sine and Cosine terms should be (-300), and 
not (+300). 
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Note: Clockwise and counter-clockwise directions are determined by the right-hand-
thumb rule. 

Example 2: The points matrix for a wedge is given as follows. Rotate the wedge 300 ccw 
around the x-axis and then 450 cw around the y-axis. The points matrix is, 

0 0 0 1 
0 0 2 1 
4 0 0 1 

  [P]  =  4 0 2 1 
0 3 0 1 
0 3 2 1 

Solution: First, we will rotate the wedge around the x-axis, and then about the y-axis.  

Rotation about the x-axis, 

0 0 0 1 
0 0 2 1  1  0   0   0 
4 0 0 1  0  cos(300)  sin(300)  0 

 [P*]x  = 4 0 2 1  0  -sin(300)  cos(300)  0 
0 3 0 1  0  0   0   1 
0 3 2 1 

Handbook on Computer Aided Design by R. B. Agarwal 3-4



Chapter 3 - Three Dimensional transformation 

Next, we rotate the wedge about the y-axis, 

0 0 0 1 
0 0 2 1  1  0   0   0 
4 0 0 1  0  cos(300)  sin(300)  0 

[P*]  = 4 0 2 1  0  -sin(300)  cos(300) 0 
0 3 0 1  0      0       0   1 
0 3 2 1 

cos(-450) 0 -sin (-450) 0   0  0  0  1 
   0   1  0  0   -1.22 -1  1.22  1 
sin(-450)  0   cos(-450) 0     =   2.82 0 2.82  1 
   0   0  0  1   1.6  -1  4.05  1

Note that, rotation about the axis is positive and hence, +300. Where as rotation about the 
y-axis is negative  – 450.
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3.3 Rotation of an object about an Arbitrary Axis 

A 3-D rotation of a geometric model about an arbitrary axis is complex, and involves 
several rotation and translation transformations. Following is a step by step procedure to 
accomplish the transformation. 
1. Translate the given axis so that it will pass through the origin.
2. Rotate the axis about x-axis (or y-axis) so that it will lie in the xz-plane (angle α).
3. Rotate the axis about the y-axis so that it will coincide with the z-axis (angle ϕ).
4. Rotate the geometric object about the z-axis (angle θ).
5. Reverse of step 3.
6. Reverse of step 2.
7. Reverse of step 1.

We will illustrate this procedure by the following example.  

Example 3: Rotate the rectangle shown, 300 ccw about the line EF and find the new 
coordinates of the rectangle. 

    F(1,4,6) 

y

2 
     E(0,2,2) 

   2 

x 
     (0,0,0) 

   z 

Solution: We will make use of the seven-step procedure outlined above and write the 
applicable transformation matrix in each step. After we have generated all the 
transformation matrices, we will solve for the new coordinates of the rectangle at the end 
of the 7th step. 
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1. Translate the given axis so that it will pass through the origin

Translation of the line EF to origin is given as, 

0 0 0 1 1 0 0 0 
2 0 0 1 0 1 0 0 

[P*]1 =  [P] [Tt], where [P]    = 2 2 0 1   and [Tt]  = 0 0 1 0 
0 2 0 1 0 -2 -2 1 

2. Rotate the axis so that it will lie in the yz-plane

The line EF is now rotated an angle α, about the x-axis so that it will lie in the xz-plane. 
The angle α is calculated with trigonometric relations, shown in the figure. 

a  = 1 
Cosα  = c/d = c/√(b2 + c2) 

= 4/(4.4721) = .8944 

  Sinα = b/d = 2/(4.4721) = .4472 b  = 2

Now, [P*]2 = [P][Tt][Tr]α, where, b 
   c  = 4 

ϕ 

1   0   0 0 1      0      0 0 
0 cosα sinα 0 0 .8944 .4472 0 

[Tr]α  =  0 -sinα cosα 0 =   0 -.4472 .8944 0 
0      0         0 1 0      0         0 1 
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3. Rotate the line so that it will coincide with the z-axis

We will now rotate the line an angle ϕ about the y-axis so that it will coincide with the z-
axis. The value of the angle ϕ is calculated from the trigonometry of the figure shown. 

sinϕ = a/L = 1/√(a2 + b2 + c2) = 1/(4.5825) = 0.2182 

cosϕ = d/L = (4.4721)/(4.5825) = 0.9759 

Now, the points matrix at this step is [P*]3 = [P*]2[Tr]ϕ, and  

cosϕ   0 -sinϕ 0  0.9759  0 -0.2182  0 
  0   1   0 0     0 1    0 0 

 [Tr]ϕ =  sinϕ    0 cosϕ 0 = 0.2182 0 0.9759 0  
  0   0    0 1     0 0    0 1 

4. Rotate the Geometric Object about the z-axis

Up to this point we have translated and rotated the rectangle so that its original position is 
changed and the line is coincident with the z-axis. To understand the effect of these steps, 
imagine that the rectangle and the line are frozen in space in a box. Now, move (translate) 
the line to the origin so that the new coordinates of the point E are (0,0,0), rotate the box 
about the x-axis, so that the line EF lies in the xz-plane, finally, rotate the box about the 
y-axis so that it coincides with the z-axis. The noteworthy point in this analogy is that the 
transformation carried out in steps 1 through 3, affect both the coordinates of the line as 
well as that of the rectangle. Now we are ready to carry out the rotation of the rectangle 
about line EF. Since the axis of rotation is now coincident with the z-axis, we can apply 
the equation of rotation about the z-axis, defined earlier. Therefore, 

cosθ sinθ  0 0  0.866 0.5  0 0 
-sinθ cosθ 0 0  -0.5 0.866 0 0 

[Tr]θ  =   0  0 1 0 =   0   0 1 0 
  0   0  0 1   0   0  0 1 
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5. Reverse of Step 3

In this step we will rotate the frozen box an angle -ϕ, about the y-axis. Since cos (-ϕ) = 
cosϕ, and sin(-ϕ) = -sin(ϕ), the transformation matrix is,  

cos(-ϕ) 0      -sin(-ϕ) 0 0.9759      0     0.2182  0 
0 1       0 0           0               1         0            0 

[Tr]-ϕ   =  sin(-ϕ) 0     cos(-ϕ) 0   =         -0.2182       0     0.9759   0 
0 1 0      0          0              1       0     0          1 

6. Reverse of Step 2

Rotate the box an angle -α about the x-axis. The transformation matrix is, 

1      0          0 0 1    0 0 0 
0   cos(-α)      sin(-α) 0  0 0.8944 -0.4472 0  

 [Tr]-α = 0  -sin(-α)     cos(-α) 0    = 0 0.4472 0.8944 0 
0      0           0 1 0    0 0 1 

7. Reverse of Step 1

In this final step, we will translate the box so that the corner E will move back to its 
original coordinates (0,2,2). The transformation matrix is, 

1 0 0 0 
0 1 0 0 

        [T-t] = 0 0 1 0 
0 2 2 1 
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This completes all the seven steps that are necessary to rotate the rectangle about the line 
EF. The new coordinates of the rectangle are given by the equation,  

[P*] = [P] [Tt] [Tr]α [Tr]ϕ [Tr]θ [Tr]-ϕ [Tr]-α [T-t] 

The concatenated transformation matrix is, 

0.9312   0.1634   -0.3256     0 
-0.1743   0.9846   -0.0044    0

 [T]c = [Tt] [Tr]α [Tr]ϕ [Tr]θ [Tr]-ϕ [Tr]-α [T-t]  =  0.3199   0.0609    0.9454    0
-0.2913   -0.0909    0.1179    1 

0 0 0 1  0.9312   0.1634 -0.3256   0 
2 0 0 1  -0.1743   0.9846 -0.0044   0 

and [P*] = [P][T]c    =  2 2 0 1 0.3199   0.0609 0.9454   0 
0 2 0 1  -0.2913   -0.0909 0.1179   1 

-0.2913  -0.0909  0.1179  1 
1.5712          0.2359          -0.5334          1 

=  1.2226  2.2051  -0.5421  1 
-0.6399  1.8783  0.1092  1 
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CHAPTER 4 

CURVES 

4.1 Introduction 

In order to understand the significance of curves, we should look into the types of model 
representations that are used in geometric modelling. Curves play a very significant role in 
CAD modelling, especially, for generating a wireframe model, which is the simplest form for 
representing a model. 

We can display an object on a monitor screen in three different computer-model forms: 
• Wireframe model
• Surface Model
• Solid model

Wireframe model: A wireframe model consist of points and curves only, and looks as if its 
made up with a bunch of wires. This is the simplest CAD model of an object. Advantages of this 
type of model include ease of creation and low level hardware and software requirements. 
Additionally, the data storage requirement is low. The main disadvantage of a wireframe model 
is that it can be very confusing to visualize. For example, a blind hole in a box may look like a 
solid cylinder, as shown in the figure. 

 A wireframe model – Model of a Solid object with a blind hole 
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In spite of its ambiguity, a wireframe model is still the most preferred form, because it can be 
created quickly and easily to verify a concept of an object. The wireframe model creation is 
somewhat similar to drawing a sketch by hand to communicate or conceptualize an object. As 
stated earlier, a wireframe model is created using points and curves only. 

Surface Model: sweeping a curve around or along an axis can create a surface model. The 
figures below show two instances of generating a surface model. 

Generating a cylinder by sweeping a circle generating a donut by sweeping a circle 
in the direction of an axis  around an axis 

The appearance or resolution of a surface model depends on the number of sweeping instances 
we select. For a realistic looking model, we need to select a large number of instances, requiring 
a large computer memory, or, opt for a not-so realistic model by selecting a small number of 
instances, and save memory. In some commercial CAD packages we have the option of selecting 
the resolution of  a model, other packages have a fixed value for resolution that cannot be 
changed by users. 

Surface models are useful for representing surfaces such as a soft-drink bottle, automobile 
fender, aircraft wing, and in general, any complicated curved surface. One of the limitations of a 
surface model is that there is no geometric definition of points that lie inside or outside the 
surface. 

Solid Model: Representation of an object by a solid model is 
relatively a new concept. There were only a couple of solids 
modelling CAD programs available in late 1980s, and they 
required mainframe computers to run on. However, in 
1990s, due to the low cost and high speed, PCs have become 
the most popular solid modelling software platform, 
prompting almost all the CAD vendors to introduce their 3-
D solid modelling software that will run on a PC.  

Solid models represent objects in a very realistic and 
unambiguous form; however, they require a large amount of 
storage memory and high-end computer hardware. A solid 
model can be shaded and rendered in desired colors to give it a more realist appearance. 
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4.2 Role of Curves in Geometric modelling 

Curves are used to draw a wireframe model, which consists of points and curves; the curves are 
utilized to generate surfaces by performing parametric transformations on them. A curve can be 
as simple as a line or as complex as a B-spline. In general, curves can be classified as follows: 
• Analytical Curves: This type of curve can be represented by a simple mathematical

equation, such as, a circle or an ellipse. They have a fixed form and cannot be modified to 
achieve a shape that violates the mathematical equations. 

• Interpolated curves: An interpolated curve is drawn by interpolating the given data points
and has a fixed form, dictated by the given data points. These curves have some limited 
flexibility in shape creation, dictated by the data points. 

• Approximated Curves: These curves provide the most flexibility in drawing curves of very
complex shapes. The model of a curved automobile fender can be easily created with the help 
of approximated curves and surfaces. 

In general, sweeping a curve along or around an axis creates a surface, and the generated surface 
will be of the same type as the generating curve, e.g., a fixed form curve will generate a fixed 
form surface. 

As stated earlier, curves are used to generate surfaces. To facilitate the computer-language 
algorithm, curves are represented by parametric equations. Non-parametric equations are used 
only to locate a point of intersection on the curve, and not for generating them. Let us briefly 
discus the parametric and non-parametric form of a curve. 
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4.3 Parametric and Non-parametric Equations of a Curve 

The mathematical representation of a curve can be classified as either parametric or non-
parametric (natural). A non-parametric equation has the form, 

y = c1 + c2 x + c3 x2 + c4 x3             Explicit non-parametric equation 

This is an example of an explicit non-parametric curve form. In this equation, there is a unique 
single value of the dependent variable for each value of the independent variable. The implicit 
non-parametric form of an equation is, 

(x – xc)2 + (y – yc)2 = r2  Implicit non-parametric equation 

In this equation, no distinction is made between the dependent and the independent variables. 

Parametric Equations: Parametric equations describe the dependent and independent variables 
in terms of a parameter. The equation can be converted to a non-parametric form, by eliminating 
the dependent and independent variables from the equation. Parametric equations allow great 
versatility in constructing space curves that are multi-valued and easily manipulated. Parametric 
curves can be defined in a constrained period (0 ≤ t ≤ 1); since curves are usually bounded in 
computer graphics, this characteristic is of considerable importance. Therefore, parametric form 
is the most common form of curve representation in geometric modelling. Examples of 
parametric and non-parametric equations follow. 

Non-Parametric Parametric  

Circle:  x2 + y2 = r2 x = r cosθ,  y = r sinθ 

Where, θ is the parameter. 

CAD programs prefer a parametric equation for generating a curve. Parametric equations are 
converted into matrix equations – to facilitate a computer solution, and then varying a parameter 
from 0 to 1 creates the points or curves. In this course, we will use the following parameters, 
with the range indicated,  

0 ≤  t  ≤ 1 0 ≤  s  ≤ 1 0 ≤  θ  ≤  2πs    0 ≤  ϕ  ≤  2πs 
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4.4 Fixed-Form or Analytical Curves 

4.4.1 Equation of a Straight Line: The simplest fixed-form curve is a straight line. 
Parametric equation of a straight line is given as, 

 P(t) = A + (B-A) t             (4.1) 

The parametric equation of line AB can be derived as,  
 B (x2, y2) 

 x = x1 + (x2 - x1) t 

y = y1 + (y2 - y1) t 
 .   P (x, y) 

where,   0 ≤  t  ≤ 1 
A (x1, y1) 

The point P on the line is sweeped from A to B, 
as the value of t is varied from 0 to 1. 

4.4.2 Conic Sections or Conic Curves 
A conic curve is generated when a plane intersects a cone, as shown. 

B 

P               Q 

A       A 
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The intersection of the plane PQ and the cone is a circle, where as, the intersection created by the 
plane AB is an ellipse. Other curves that can be created are parabola and hyperbola.  

Conic curves are used to create simple wireframe models of objects, which have edges that can 
be represented by these analytical curves. The fixed-form or analytical curves do not have 
inflection points, i.e., curves have slopes that are either positive or negative and do not change 
their sign (positive slope will remain positive and negative slope will remain negative). All conic 
curves can be represented by a quadratic equation, for example, circular and elliptical curves 
have quadratic polynomial equations. 

4.4.3 Circular Curve 
The non-parametric equation of a circle is, 

(x – xc)2 + (y – yc)2 = r2 (4.2) 

Where, xc, and yc are coordinates of the center, and r is radius of the circle. 

If we were to use this form of the equation for plotting a circle or a circular curve, we will first 
calculate several values of x and y along the circumference of the circle, and then plot them. The 
curve thus generated will be of a poor quality, unless we plot a very large number of data points, 
which will result in a significant demand for storage of these data points. Therefore, as stated 
earlier, in CAD programs, we use a parametric equation, which avoids the need for storage of the 
data points, and provides a smooth curve. The parametric equation of the above circle can be 
written as, 

 xi = xc + r cosθ 
 yi = yc + r sinθ (4.3) 

This equation is converted into a matrix form so that a computer can solve it. We will now 
convert this equation into a matrix form. 

 Let us assume that the plot starts at the point (xi, yi), and the center lies at the origin. We  
increment θ to (θ +∆θ), giving us the new point on the circle (xi+1, yi+1), or 

xi+1 = r cos(θ +∆θ) 
yi+1 = r sin(θ +∆θ) 
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   (xi+1, yi+1) 

∇θ      (xi, yi) 
θ        

Expanding it by the use of  
trigonometric identities, we get: 

xi+1 = r cosθ cos∆θ - r sinθ sin∆θ 

yi+1 = r sinθ cos∆θ + r cosθ sin∆θ 

Substituting the values: xi =  r cosθ, and yi =  r sinθ,  we get 

xi+1 = xi cos∆θ - yi sin∆θ 

yi+1 = yi cos∆θ + xi sin∆θ 

In matrix form, these equations can be written as, 

 cos∆θ    sin∆θ       0 0 
[xi+1   yi+1  0 1]  =   [xi yi 0 1]   - sin∆θ    cos∆θ       0 0       (4.4) 

    0               0       1 0 
    0               0       0 1 

Equation (4.4) is valid for a circle that has center at the origin. To find the equation of a circle 
that has center located at an arbitrary point (xc, yc), we can use the translation transformation. 
Note that the equation (4.4) can be interpreted as rotational transformation of points xi  and yi 
about the origin. Now, instead of rotation about the origin, we wish to rotate the point about the 
fixed point (xc, yc). This can be accomplished by the three-step approach, discussed in chapter 2, 
i.e., first translate the fixed point to the origin, rotate the object, and finally translate it so that the
fixed point is restored to its original position. Using this procedure we will get: 
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 [xi+1 yi+1 0 1]  = 

1 0 0 0   cos∆θ    sin∆θ     0 0 
             [xi      yi     0      1] 0 1 0 0       - sin∆θ    cos∆θ    0 0 

0 0 1 0     0              0   1 0 
-xc -yc 0 1     0              0   0 1 

1 0 0 0 
0 1 0 0 (4.5) 
0 0 1 0 
xc yc 0 1 

Simplifying the equation we get, 

xi+1 = xc + (xi – xc) cos∆θ - (yi – yc) sin∆θ 

yi+1 = yc + (xi – xc) sin∆θ + (yi – yc) cos∆θ (4.6) 

Even though, equations (4.6) can be used as an iterative formula to plot a circle or a circular 
curve, using the EXCEL or MATLAB, or any other plot routines, the matrix equation (4.5) is the 
preferred form for a CAD program. The original CAD programs used iterative formulas to 
generate curves. The BASIC and FORTRAN languages were used to write the CAD codes. 
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4.4.4 Ellipse 
Following the procedure outlined in the previous section, we can derive the parametric equations 
of an ellipse. Parametric equation of an ellipse is given by 
the equation  

xi = a cosθ 

yi = b sinθ  
2b 

For a point on the ellipse, in general, the equation is 

xi+1 = xi cos∆θ – (a/b) yi sin∆θ 2a 
yi+1 = yi cos∆θ – (b/a) xi sin∆θ (4.7) 

For a more general case, when the axes of the ellipse are not parallel to the coordinate axes, and 
the center of the ellipse is at a distance xc, yc from the origin, the equation of the ellipse is given 
below. Let α be the angle that the major axis makes with the horizontal (x-axis), as shown. The 
equation of the ellipse can be derived as  

xi = xc + x’i cosα – y’i sinα 

yi = yc + x’i sinα + y’i cosα (4.8) 

Where, x’ and y’ are the coordinate values of a  
Point on the ellipse, in term of the rotated axes  
x’ and y’. 

Equations (4.8) can be used to write either as an  
iterative formula or as a matrix equation for creating  
an elliptical curve. 
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4.5 Interpolated Curves 

Interpolation method can be applied to draw curves that pass through a set of the given data 
points. The resulting curve can be a straight line, quadratic, cubic, or higher order curve. We are 
quite familiar, and have used, the linear interpolation of a straight line, given by the formula 

f(x) = f(xi) + [f(xi+1) – f(xi)] [(x-xi) / (xi+1 – xi)] (4.9) 

Now, we will discuss the higher order curves, which are represented by higher order 
polynomials. Lagrange polynomial is a popular polynomial function used for interpolation of 
high order polynomials.  

4.5.1 Lagrange Polynomial 
When a sequence of planar points (x0, y0), (x1, y1), (x2, y2), ….(xn, yn) is given, the nth degree of 
interpolated polynomial can be calculated by the Lagrange Polynomial equation, 

 fn (x) = Σ yi Li,n (x) (4.10) 

where,   

Li,n (x) = [(x –x0)…. (x –xi-1) (x –xi+1)…. (x –xn)] / [(xi –x0)…. (xi –xi-1) (xi –xi+1)…. (xi –xn)] 

To understand the above expression better, note that  

• The term  (x –xi) is skipped in the numerator, and
• The denominator starts with the term (xi –x0) and skips the term (xi –xi), which will make the

expression equal to infinity.

Example: Using the Lagrange polynomial, find the expression of the curve containing the  
points,   P0(1, 1), P1(2, 2), P2(3, 1) 

Solution: Here, n = 2 and x0 =1, y0 = 1, x1 = 2, y1 = 2, etc. The polynomial is of a second 
degree. Expanding the Lagrange equation, we get, 

f2 (x)   =  y0 [(x - x1) (x - x2)] / [(x0 – x1) (x0 – x2)] + y1 [(x – x0) (x - x2)] /  
[(x1 – x0) (x1 – x2)] + y2 [(x – x0) (x – x1)] / [(x2 – x0) (x2 – x1)]  
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=  (1) [(x – 2) (x – 3)] / [(1 – 2) (1 – 3)] + (2) [(x-1) (x – 3)] / [(2 – 1) (2 – 3)] +  
    (1) [(x – 1) (x - 2)] / [(3 – 1) (3- 2)] 

            =  ½ (x2 – 5x + 6) – 2 (x2 –  4 x + 3) + ½ (x2 – 3 x + 2) or 

f2 (x)     =  - x2 + 4 x – 2 

This is the explicit non-parametric equation of a circle; the given points lie on the circumference. 

4.5.2 Parametric Cubic Curve or Cubic Spline – Synthetic Curves 
The analytical and interpolated curves, discussed in the previous section (4.4) and (4.5) are 
insufficient to meet the requirements of mechanical parts that have complex curved shapes, such 
as, propeller blades, aircraft fuselage, automobile body, etc. These components contain non-
analytical, synthetic curves. Design of curved boundaries and surfaces require curve 
representations that can be manipulated by changing data points, which will create bends and 
sharp turns in the shape of the curve. The curves are called synthetic curves, and the data points 
are called vertices or control points. If the curve passes through all the data points, it is called an 
interpolant (interpolated). Smoothness of the curve is the most important requirement of a 
synthetic curve.  

Various continuity requirements at the data points can be specified to impose various degrees of 
smoothness of the curve. A complex curve may consist of several curve segments joined 
together. Smoothness of the resulting curve is assured by imposing one of the continuity 
requirements. A zero order continuity (C0) assures a continuous curve, first order continuity (C1)  
assures a continuous slope, and a second order continuity (C2) assures a continuous curvature, as 
shown below. 

   C0 Continuity – The curve is  C1 Continuity- Slope Continuity  C2 Continuity - Curvature  
   Continuous everywhere   at the common point           continuity at the common point 

A cubic polynomial is the lowest degree polynomial that can guarantee a C2 curve. Higher order 
polynomials are not used in CAD, because they tend to oscillate about the control points and 
require large data storage. Major CAD/CAM systems provide three types of synthetic curves: 
Hermite Cubic Spline, Bezier Curves, and B-Spline Curves.  
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Cubic Spline curves pass through all the data points and therefore they can be called as 
interpolated curves. Bezier and B-Spline curves do not pass through all the data points, instead, 
they pass through the vicinity of these data points. Both the cubic spline and Bezier curve have 
first-order continuity, where as, B-Spline curves have a second-order continuity.  

4.5.3 Hermite Cubic Spline 
Hermite cubic curve is also known as parametric cubic curve, and cubic spline. This 
curve is used to interpolate given data points that result in a synthetic curve, but not a free 
form, unlike the Bezier and B-spline curves. The most commonly used cubic spline is a 
three-dimensional planar curve (not twisted). The curve is defined by two data points that 
lie at the beginning and at the end of the curve, along with the slopes at these points. It is 
represented by a cubic polynomial. When two end points and their slopes define a curve, 
the curve is called a Hermite cubic curve. Several cubic splines can be joined together by 
imposing the slope continuity at the common points. In design applications, cubic splines 
are not as popular as the Bezier and B-spline curves. There are two reasons for this: 

• The curve cannot be modified locally, i.e., when a data point is moved, the
entire curve is affected, resulting in a global control, as shown in the
figure.

• The order of the curve is always constant (cubic), regardless of the number
of data points. Increase in the number of data points increases shape
flexibility, However, this requires more data points, creating more splines,
that are joined together (only two data points and slopes are utilized for
each spline).

  Effect of Moving the Data Point Effect of Change in slope 

4.5.4 Equation of a Cubic Spline 
A cubic spline is a third-degree polynomial, defined as 

P(t) = Σ ai ti (4.11) 

where,    0 ≤ t ≤ 1, and P(t) is a point on the curve. 
Expanding the above equation, we get 
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P(t) = a3 t3 + a2 t2 + a1 t + a0 (4.12) 

If (x,y,z) are the coordinates of point P, the equation (4.12) can be written as, 

x(t) = a3x t3 + a2x t2 + a1x t + a0x

y(t) = a3y t3 + a2y t2 + a1y t + a0y (4.13) 

z(t) = a3z t3 + a2z t2 + a1z t + a0z 

There are 12 unknown coefficients, aij, known as the algebraic coefficients. These 
coefficients can be evaluated by applying the boundary conditions at the end points. From 
the coordinates of the end points of each segment, six of the twelve needed equations are 
obtained. The other six equations are found by using the tangent vectors at the two ends 
of each segment. Substituting the boundary conditions at t = 0, and t = 1, we get, 

P(0) = a0, and  (a) 

P(1) = a3 + a2 + a1 + a0 (b) 

To find the tangent vectors, we differentiate equation (4.12), and get, 

P’(t) = 3 a3 t2 + 2 a2 t + a1  

Applying the boundary conditions at t = 0 and t = 1,  we get,  

P’(0) = a1 (c) 

P’(1) = 3 a3 + 2 a2 + a1 (d) 

Solving for the coefficients in terms of the P(t) and P’(t) values in equations (a) through (d), we 
get, 

a0 = P(0) 
a1 = P’(0) 
a2 = -3 P(0) +3 P(1) – 2 P’(0) – P’(1) (4.14) 
a3 = 2 P(0) – 2 P(1) + P’(0) + P’(1) 
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The equation 
P(t) = a3 t3 + a2 t2 + a1 t + a0 

can be written, with coefficients aij replaced by the P(t) and P’(t) values in equations (4.14), 
resulting,  

P(t) = [2 P(0) – 2 P(1) + P’(0) + P’(1)] t3 + [-3 P(0) + 3 P(1) – 2 P’(0) – P’(1)] t2 + P’(0) t + P(0) 

Or, rearranging the terms, we get, 

P(t) = [(2 t3 – 3 t2 + 1)] P(0) + [(-2 t3 + 3 t2)] P(1) + [(t3 – 2 t2 + t)] P’(0) + [(t3 – t2)] P’(1) 

In matrix form the equation can be written as, 

2 -2 1 1  P(0) 
P(t)  =    [t3       t2      t       1] -3  3 -2    -1 P(1) 

0  0 1 0  P’(0) (4.15) 
1  0 0 0  P’(1) 

The equation in short form can be written as:  P(t) = [t] [M]H [G] 

Where, the terms [t],  [M]H, and [G] correspond to the terms on the right hand side of the  
equation (4.15). [M]H is called Hermite matrix of a cubic spline, and represents the 
constant matrix. The term [G] is called geometric coefficient matrix. Let us consider an 
example to understand how the equation (4.15) works. 

Example 5: A parametric cubic curve passes through the points (0,0), (2,4), (4,3), (5, -2) 
which are parametrized at t = 0, ¼, ¾, and 1, respectively. Determine the geometric 
coefficient matrix  and the slope of the curve when t = 0.5. 

Solution: The points on the curve are 

(0,0) at t = 0 
(2,4) at t = ¼ 
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(4,3) at t = ¾ 
(5,-2) at t = 1 

Substituting in equation (4.15), we get, 

0 0      0           0      0      1         2 -2  1  1 P(0) 
2 4 0.0156    0.0625   0.25   1 -3  3 -2 -1 P(1) 
4 3         = 0.4218    0.5625   0.75   1  0  0  1  0 P’(0) 
5 -2    1 1      1      1     1  0  0  0 P’(1) 

Solving, we get, 

P(0)     0   0 
P(1)     5  -2 
P’(0)  = 10.33  22 
P’(1)   4.99 -26 

The slope at t = 0.5 is found by taking the first derivative of the equation (4.15), as follows, 

 2 -2  1  1  0       0 
        -3 3 -2 -1  5      -2 

P’(t)  =  [3t3   2t    1     0]  0 0  1  0 10.33   22 
1 0  0  0  4.99     -26 

Therefore, 

P’(0.5) = [3.67     -2.0], or 

Slope = ∆x/∆y = -2.0/3.67 = - 0.545 

Note: coinciding the end points, and imposing equal values of the slopes, as shown, can create  
closed shape of a cubic spline.
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4.6 Approximated Synthetic Curves 

In the previous sections, we have studied the analytical and interpolated curves, now we will 
focus on the approximated curves. Bezier and B-spline curves represent the approximated 
curves, these curves are synthetic, and can be joined together to form a very smooth curve. For 
data fitting, interpolated curves work best, whereas, for free form geometry, interpolation cannot 
be used, and approximation becomes necessary. In many engineering applications, smoothness 
of a curve is preferred over the quality of interpolation. These curves are flexible, local changes 
in the shape do not affect the entire shape of the curve. Let us study the Bezier curve first, 
followed by the B-spline. 

4.6.1 Bezier Curves 
Equation of the Bezier curve provides an approximate polynomial that passes near the given 
control points and through the first and last points. In 1960s, the French engineer P. Bezier, while 
working for the Renault automobile manufacturer, developed a system of curves that combine 
the features of both interpolating and approximating polynomials. In this curve, the control 
points influence the path of the curve and the first two and last two control points define lines 
which are tangent to the beginning and the end of the curve. Several curves can be combined and 
blended together. In engineering, only the quadratic, cubic and quartic curves are frequently 
used.  

4.6.2 Bezier’s Polynomial Equation 
The curve is defined by the equation 

P(t) =  ∑ Vi Bi,n (t) where,  0 ≤ t  ≤ 1 and i = 0, 1, 2, …, n (4.16) 

Here, Vi  represents the  n+1 control points, and  Bi,n (t)  is the blending function for the Bezier 
representation and is given as 

  n 
 Bi,n (t) =         i       ( ti ) (1-t)n-i (4.17) 

Where n is the degree of the polynomial and  

            n n! 
            i        = i = 0, 1, 2, …….,n 

i! (n-i)!         

These blending functions satisfy the following equations 
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Bi,n (t) > 0   for all i 

  ∑ Bi,n (t) = 1 (4.18) 

The equations (4.18) force the curve to lie entirely within the convex figure (or envelop) set by 
the extreme points of the polygon formed by the control points. The envelope represents the 
figure created by stretching a rubber band around all the control points. 

The figure below shows that the first two points and the last two points form lines that are 
tangent to the curve. Also, as we move point v1, the curve changes shape, such that the tangent 
lines always remain tangent to the curve. 

v1 
v2 v1’ 

v0 v3

Relationship between end-points and curve slope 

Bezier’s blending function produces an nth degree polynomial for n+1 control points and forces 
the Bezier curve to interpolate the first and last control points. The intermediate control points 
pull the curve toward them, and can be used to adjust the curve to the desired shape.  
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4.6.3 Third Order Bezier Polynomial 
We will simplify the Bezier’s equation for n = 3 (a cubic curve). The procedure developed here 
can be extended to the other values of n. 

For n = 3, we will have four control points, namely, V0, V1, V2, V3. i will vary from 0 to 3. The 
Bezier’s equation,  

P(t) =  ∑ Vi Bi,3 (t) can be expanded to give, (4.19) 

P(t) = V0 B0,3 + V1 B1,3 + V2 B2,3 + V3 B3,3  and 

         3! 
B0,3 = --------------    t0 (1-t)3 = (1-t)3 

      0! 3! 

           3! 
B1,3 = --------------   t1 (1-t)2 = 3t (1-t)2 

       1! 2! 

         3! 
B2,3 = --------------    t2 (1-t)1 = 3t2 (1-t) 

      2! 1! 

         3! 
B3,3 = --------------    t3 (1-t)0 = t3 

     3! 0! 

By substituting the above values in the equation (4.19) we get 

P(t) = (1-t)3 V0 +3t (1-t)2 V1 + 3t2 (1-t) V2 + t3 V3  

In matrix form this equation is written as 

-1   3 -3 1 V0  
P(t) =  [t3     t2     t     1]       3  -6 3 0 V1 (4.20) 

-3   3 0 0 V2 
1   0 0 0 V3  
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4.6.4 Blending Two or More Bezier Curves  
Two or more Bezier curves can be blended to provide a desired curve of a complex nature. When 
joining curves, slope continuity is maintained by having three collinear points, the middle one 
being common to the adjoining curves, as shown. 

Point V3 is the middle point of the common points V2,, V3,, and V4  of curves A and B. 

NOTE: Using the Bezier curves, we can create closed curves by making the first and last points 
of the control points coincide. 

Example: A cubic Bezier curve is described by the four control points: (0,0), (2,1), (5,2), (6,1). 
Find the tangent to the curve at t = 0.5. 

Solution: We will use the Bezier cubic polynomial, given in equation (4.20), which is, 

-1   3 -3 1    V0  
P(t) =  [t3     t2     t     1]       3  -6 3 0    V1

-3   3 0 0    V2 
1   0 0 0    V3  
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where, V0 = (0,0) 
V1 = (2,1)  
V2 = (5,2)  
V3 = (6,1) 

The tangent is given by the derivative of the general equation above, 

-1   3 -3 1    V0  
P’(t)  =    [3t2     2t     1      0]       3  -6 3 0    V1 (4.21) 

-3   3 0 0    V2 
1   0 0 0    V3  

At t = 0.5, we get, 

-1   3 -3 1 V0  
P’(t)  =     [3(.5)2   2(.5)   1  0] 3  -6 3 0 V1 

-3   3 0 0  V2 
1   0 0 0        V3  

        =  [6.75        1.5    0 1]
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4.6.5 B-Spline Curve 
B-spline curves use a blending function, which generates a smooth, single parametric polynomial 
curve through any number of points. To generate a Bezier curve of the same quality of 
smoothness, we will have to use several pieces of Bezier curves. Unlike the Bezier curve, the 
degree of the polynomial can be selected independently of the number of control points. The 
degree of the blending function controls the degree of the resulting B-spline curve. The curve has 
good local control, i.e., if one vertex is moved, only some curve segments are affected, and the 
rest of the curve remains unchanged.  
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P(t)  =  Σ Ni,k (t) Vi (4.22) 

Where,  P(t) is a point on the curve.  

i indicates the position of control point i 
k is order of curve 

  Ni,k (t) are blending functions 
  Vi are control points 

The matrix form of the uniform cubic B-spline curve is: 

-1  3    -3 1  Vi-1
 3 -6 3 0  Vi (4.23)  Pi(t)  =  1/6[t3    t2     t     1]  -3  0 3 0 Vi+1 

   1  4 1 0  Vi+2 
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The mathematical derivation of the B-spline curve is complex and beyond the scope of this 
course. The equation is of the form: 
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CHAPTER 5 

SURFACES

5.1 Introduction 

Wire frame models are unable to represent complex surfaces of objects like car, ship, 
airplane wing, castings etc. A surface model can be used to represent the surface profile 
of these objects. Also, surface model can be used for calculating mass properties, 
interference between parts, generating cross-sectioned views, generating finite element 
mesh, and generating NC tool paths for continuous path machining. Additionally, surface 
model can be used to fit experimental data, discretized solutions of differential equations, 
construction of pressure surface, construction of stress distribution etc. 

Surface creation on a CAD system usually requires wire frame entities: lines, curves, 
points, etc. All analytical and synthetic curves can be used to generate surfaces. 
In order to visualize surfaces on a graphic display, a mesh, say m x n in size is usually 
displayed; the mesh size is controlled by the user. Most CAD systems provide options to 
set the mesh size. 

A surface of an object is more complete and less ambiguous representation than its wire 
frame model;  it is an extension of a wire frame model with additional information. 
A wire frame model can be extracted from a surface model by deleting all surface entities 
(not the wireframe entities – point, lines, or curves!). Databases of surface models are 
centralized and associative, manipulation of surface entities in one view is automatically 
reflected in the other views. Surface models can be shaded and represented with hidden 
lines. 
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5.2 Types of Surfaces 

5.2.1 Plane Surface 
This is the simplest surface, requires 3 non-coincidental points to define an infinite plane. 
The plane surface can be used to generate cross sectional views by intersecting a surface 
or solid model with it. 

5.2.2 Ruled (lofted) Surface 
This is a linear surface. It interpolates linearly between two boundary curves that define 
the surface. Boundary curves can be any wire frame entity. The surface is ideal to 
represent surfaces that do not have any twists or kinks. 

Boundary Curve 

5.2.3 Surface of Revolution 
This is an axisymmetric surface that can model axisymmetric objects. It is generated by 
rotating a planar wire frame entity in space about the axis of symmetry of a given angle. 

Curve axis of
symmetry 
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5.2.4 Tabulated Surface 
This is a surface generated by translating a planar curve a given distance along a 
specified direction. The plane of the curve is perpendicular to the axis of the generated 
cylinder. 

Cylindrical Surface 

Curve 

5.2.5 Bi-linear Surface 
This 3-D surface is generated by interpolation of 4 endpoints. Bi-linear surfaces are very 
useful in finite element analysis. A mechanical structure is discretized into elements, 
which are generated by interpolating 4 node points to form a 2-D solid element. 

P2 P3 

           P1 P4

5.2.6 Coons Patch 
Coons patch or surface is generated by the interpolation of 4 edge curves as shown. 

      Edge 2 

Edge1 Edge 3 

Edge 4 
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5.2.7 Bezier Surface 
This is a synthetic surface similar to the Bezier curve and is obtained by transformation 
of a Bezier curve. It permits twists and kinks in the surface. The surface does not pass 
through all the data points. 

5.2.8 B-Spline Surface 
This is a synthetic surface and does not pass through all data points. The surface is 
capable of giving very smooth contours, and can be reshaped with local controls. 

Mathematical derivation of the B-spline surface is beyond the scope of this course. Only 
limited mathematical consideration will be given here. 

Computer generated surfaces play a very important part in manufacturing of engineering 
products. A surface generated by a CAD program provides a very accurate and smooth 
surface, which can be generated by NC machines without any room for misinterpretation. 
Therefore, in manufacturing, computer generated surfaces are preferred.  Since surfaces 
are mathematical models, we can quickly find the centroid, surface area, etc. Another 
advantage of CAD surfaces is that they can be easily modified. 
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5.3 Interpolated Surfaces – Bilinear Surface 
A bilinear surface is obtained by linear interpolation between four points, which may or 
may not lie in the same plane. The four points appear as vertices or corner points and the 
parameter values u and v create lines at various intervals to provide the surface visibility, 
shown in the figure. The parameters u and v are defined as 

0 ≤ u ≤ 1, and  0 ≤ v ≤ 1 
P (1,1) P (1,0) 

P(0,0) 
P(1,0)  
P(0,1) 
P(1,1) 

u  
Bilinear Patch 

P (0,1)
v

P (0,0)

The interpolated parametric equation of a bilinear surface is given as: 

P (u,v) = (1-u) (1-v) P(0,0) + u (1-v) P(1,0) + (1-u) P(0,1) + u v P(1,1) 

In matrix form, it can be written as 

P(u,v) =     [(1-u)(1-v)  u(1-v)  (1-u)v uv] 

 Node points in FEA 

Application of Bilinear Surfaces 
Bilinear patches are extensively used in 2-D finite element analysis (FEA). In FEA, an 
engineering structure is defined by several bilinear surfaces (elements), which are created 
by joining points on the structure’s geometry, called nodes. The nodes are connected to 
other nodes to create quadrilateral surfaces. Points not lying on the nodes are calculated 
by interpolation. Thus, the entire structure is completely defined by the nodes and the 
bilinear surfaces. 

Drawbacks of Bilinear Surfaces 
Bilinear surfaces have a very limited use, mainly, for FEA. Since only 4 points can be 
used in the interpolation, the smoothness of the generated surface is limited. Additionally, 
there is no flexibility to control shapes of the surface, unlike the sweeped surfaces. 
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5.4 Interpolated Surfaces – Coons Patch 

A linear interpolation between four bounded curves is used to generate a Coons surface, 
also called as Coons patch. The method is credited to S. Coons who developed this 
concept for generating a surface. 

Linear interpolation between the boundary curves P(0,v), P(u,0), P(1,v) , and P(u,1) gives 
the equation 

Q(u,v) = (1-v) P(u,0) + u P(1,v) + v P(u,1) + (1-u) P(0,v) 

P(1,v) 
         P (1,1) 

P (1,0) 

P(u,1)
u 

P(u,0) Coons Patch 

   P (0,1) 
v    P (0,0) 

  P(0,v)  

The above equation gives wrong values at the corners (u,v = 0 and 1). For example, 
substituting the values of u and v we get, 

Q(0,0) = P(0,0) + P(0,0) = 2P(0,0) 
Q(1,0) = 2P(1,0), etc. 

Which are obviously wrong values. Therefore, The coons patch is created by 
modification of the interpolation equation, where the corners are subtracted. The 
modified interpolation equation is given as, 

P(u,v)     =  (1-v) P(u,0) + u P(1,v) – v P(u,1) + (1-u) P(0,v) –  
(1-u) (1-v) P(0,0) – u (1-v) x P(1,0) - (1-u) v P(0,1) – u v P(1,1). 

For computational purposes, it is more convenient to write this equation as, 
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-P(0,0) 
-P(1,0) 
 P(u,0) 

P(u,v) = [(1 – v)    u     v     (1 – u) ]    Eqns. of the boundary curves

- [(1 – u)(1 –v)     u(1 – v)     (1 – u)v     u

Which gives, 

Q(u,v) = [(1 – u)     u     1] 

Other interpolated surfaces include the Param

Applications 
Coons surface is easy to create, and therefore
generating models. However, it has only a li
inflexible and cannot create very smooth sur
smooth automobile fender using the Coons s
AutoCAD, use this surface for generating su
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P(1,v) 
P(u,1) 
P(0,v)

  
P(0,0) 
P(1,0) End-points (coordinates) 

v]      P(0,1) 
P(1,1) 
-P(0,1) 
-P(1,1) 
 P(u,1) 
etric
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wal 
P(0,v)
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    0 
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5.5 Linearly Swept Surfaces 
A swept surface is generated when a curve is parametrically translated or rotated. In 
CAD, a surface is represented by a series of curves, which are parametrically generated 
at various instances. For example, a cylindrical surface is generated when a circular arc is 
translated up to the given dimension using a parameter t, where t varies as, 0 ≤ t ≤1. 

In the figure shown, the cylindrical surface is generated when a circular arc is translated a 
distance L, with the interim instances at t = 0.1, 0.2, 0.3, … 1. Here, the parameter t is 
given 10 values, and therefore, the surface of the cylinder is represented by 10 circular 
curves. The appearance of the surface improves as the parameter t varies at smaller 
intervals. Thus, if t is varied with ∆t = 0.01, there will be 100 circular curves representing 
the surface. 

L 

t = 0   t = 1

L 

A surface is an extension of a curve. The parametric representation of a curve is given by 
a single-vector equation of the form: 

P(t) = [x(t) y(t) z(t)] 

Here, only one parametric variable or one degree of freedom is needed. Whereas, a 
surface representation requires two parametric variables, and the equation is given as: 

Q(s,t) = [x(s,t)  y(s,t) z(s,t)] 

Tracing a point in the s and t directions, as shown in the figure on the next page, 
generates a surface. One parameter variable is kept constant while varying the other one. 
A series of curves is created along the s and t directions. For example, constraining the 
parameters s and t between zero and 1, the set of curves generated along the s direction is, 

P(0,t), P(0.1,t), P(0.2, t)………….P(1, t)  

and the other set of curves along the t direction is, 
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 P(s,0), P(s,0.1),…P(S, 0.9), P(s,1). 

P (s,1)

P(0,t) 

t P (1,t)

 s 
           P (s,0) 

Thus, creation of a surface requires creation of the multiple curves that constitute it. This 
concept can be applied to both, the surface that has an analytical formulation (conic 
sections) and to a free-form surface (Bezier, B-spline). 
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5.6 Revolved Surfaces (Circular Sweep)        

Surface of revolution is obtained by rotating a  
plane-curve around an axis. In the figure shown,  
line AB is rotated about the z-axis through an   

y

x 

z 

angle of 2π radians, generating a 
of surfaces, based on the conditio
parameters t and θ. Here, t descri
rotation. In general, a point on lin
and, when rotated by θ radians, it

In general, the point matrix gives
around the z-axis, 

P(t, θ) = [x(t) cosθ   x(t) sinθ   z(t

In matrix form the equation can b
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cosθ    sinθ    0 0 
0 1 0 0 

P (t, θ) = [x(t)   0   z(t)   1]  0 0 1 0 
0 0 0 1 

Note: The above rotation matrix is equivalent to the rotational transformation matrix 
studied earlier, which is, 

 cosθ    sinθ    0 0 cosθ    sinθ    0 0 
0        1 0 0                 - sinθ       cosθ  0 0 

  0 0 1 0 =        0   0 1 0 
  0 0 0 1 0 0 0 1 

Thus, the generated surface is a rotational transformation of a line (or curve), except θ is 
not constant, but has values,  0 ≤ θ ≤ 2π. 

Example 

Generate the conical surface obtained by rotation of the line segment AB around the z-
axis with,  

A = ( 1,0,1) and B = ( 7,0,7). 

Solution 

Line AB can be represented in parametric form as: 

P (t)  = [x(t)   y(t)   z(t)], and the parametric equation of a line is, 

P (t)  = A + (B-A) t 

based on this equation, the coordinates of a of point on the line are given as, 

x(t) = 1 + (7-1) t = 1+ 6t,  
y(t) = 0 
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z(t) = 1 + (7-1) t = 1 + 6t 

The equation of the surface as given above is,  

P(t, θ) = [x(t) cosθ   x(t)sinθ   z(t)]  or 

= [(1+6t) cosθ   (1+6t) sinθ   (1+6t)] -  equation of the surface 

Any point on the surface can be located by substituting t and θ values in the above 
equation, e.g.:  at t = 0.4 and θ = π/2 radians 

P(0.4, π/2) = [1+6(.4)cos (π/2)  1+ 6(.4) sin (π/2)   1 + 6(.4) ] 

= [0   3.4   3.4], which is the point on the surface at (.4, π/2) 

Example 

Generate a Torus by rotating a circle of radius r and the center at (a,0,0) about the z-axis. 

Solution 

Rotating a circle contained in the x z plane around the z-axis can generate a torus. The 
center of the circle has coordinates (a,0,0) and equation of the circle in parametric form is 
given as; 

P (φ) = [(a + r cosφ, 0, r sinφ] 

The torus is represented by, 

Q(φ, θ) = {[(a + r cosφ) cosθ], [(a + rcosφ) sinθ], rsinφ} –  equation of the torus 

In this case, the parameters are φ and θ. 
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5.7 Circular Sweep of a Synthetic Curve 

Equation of a synthetic curve (free-form curve), as derived earlier, is given as, 

P (t) = [t] [M] [V] 

The surface of revolution is then given by, 

 Q (t, θ) = [t] [M] [V] [Tr] θ  = [Q(t)][Tr] θ 

Where, Q(t, θ ) is the equation of the curve, and [Tr] θ is the rotation matrix about the z-
axis. 

Note: To rotate the curve about the axis, we will have to use the translation and rotation 
matrices. 

Example: 

A cubic Bezier curve is defined by the control points: P1 (1,0,2), P2 (3,0,4), P3 (2,0,6),  
P4 (5,0,7). Find the surface of revolution obtained by revolving the curve about the z-axis 
and calculate the point on the surface at t = 0.5, θ = π/4 rad. 

Solution 

The cubic Bezier curve is given by the equation, 

P (t)  =        [t][m][v] 
-1 3 -3 1 v0
3 -6 3 0 v1 

        =         [t3  t2  t  1]  -3 3 0 0 v2 
1 0 0 0 v3 

Substituting the coordinates of the points, we get 

-1 3 -3 1 1 0 2 1 
3 -6 3 0 3 0 4 1 

P (t) = [t3   t2   t   1] -3 3 0 0 2 0 6 1 
1 0 0 0 5 0 7 1 
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The surface of revolution is: 

   -1     3   -3   1           1   0   2   1 cosθ    sinθ   0   0  
3    -6   3    0           3   0   4   1   0          0     0   0 

Q (t, θ) = [t3   t2   t   1]     -3    3    0    0 2   0   6   1          0          0     1   0          0 ≤ θ ≤ 2πn 
1    0     0    0          5   0   7   1          0          0     0   1    

0 ≤ n ≤ 1 

For t = 0.5 and θ = π/4, the surface equation is, 

   -1     3   -3   1         1   0   2    1 cos(π/4)    sin(π/4)   0   0  
 3    -6    3    0         3   0   4    1   0 0       0   0 

Q (t, θ) = [(.5)3   (.5)2   (.5)   1]  -3     3    0    0         2   0   6    1          0 0       1   0 
 1     0    0    0          5   0   7    1          0 0       0   1    

=  [1.86 1.86 4.86 1]
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5.8 Creating a Surface by Parametric Sweeping 

In the examples given above, sweeping a curve parametrically generated the surfaces. In 
parametric sweeping procedure, a surface is generated through the movement of a line or 
a curve along or around a defined path. The curve is sweeped as the sweep parameter is 
varied from the values of 0 to 1, creating several instances of the curve along the sweep 
path. In general, the equation of the surface can be given as, 

Q (t, s) = P (t) T (s) 

Where, P (t) is the parametric equation of a curve and T(s) is the sweep transformation 
based on the shape of the path. The sweep transformation can consist of translation, 
scaling, rotation or a combined transformation. If the path is a straight line, the points 
along the path on the line can be represented by, 

x(s) = as 
y(s) = bs 
z(s) = cs 

and T (s) is given as, 

1 0 0 0 
0 1 0 0 

T(s)  =       0 0 1 0 
  as bs cs 1 

Where, a, b, c are coordinate values, and 0 ≤ s  ≤  1 

This is equivalent to a three-dimensional translation of a curve with several traces 
generated along the path, controlled by how the parameter s is varied. 

Example 
Consider the Bezier curve defined by the control points P1 = (0,5,0), P2 = (3,4,0),  P3 = 
(2,0,0), and P4 = (5,0,0). Translate the curve five units along the z-axis to generate a 
swept surface. 

Solution 
Q (t,s) = [P(t)] [Tt], substituting the numbers, we get, 

   -1     3   -3   1           0   5   0   1   1     0     0     0  
3    -6   3    0           3   4   0   1   0     1    0     0 

Q (t, s) = [t3   t2   t   1]     -3    3    0    0 2   0   0   1          0     0    1     0 
1    0    0    0           5   0   0   1          0      0   5s    1    

Substituting the value of s and solving the matrices can calculate any point on the surface. 
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5.9 Creating a Surface by Sweeping a polygon 
Any polygon can be swept around a given path to generate a surface. The equation of 

the surface is given as, 

Q(s, t) = [P]{T(s)] 

Where, [P] is the point matrix, and T(s) is the transformation matrix. 

Example: 

 Sweep (rotate) the triangle A(2,2), B(5,7), C(-2,-5) around x-axis and generate the 
surface  

solution: 

Q(s,t) = [P] [T(s)] 

2 2 0 1 1 0      0      0 
           =  5 7 0 1 0       cos2πn    sin2πn    0 

-2 -5 0 1 0     - sin2πn       cos2πn   0 
0     0       0        1 

Note: The value of n locates various positions on the swept surface. 
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5.10 Creating a Parametric Cubic Patch  

Parametric cubic patch or surface is generated by four boundary curves; the curves are 
parametric cubic polynomials. The equation of a parametric cubic curve was defined 
earlier as: 

2 -2 1 1 P(0) 
-3 3 -2 -1 P(1) 

= [t3    t2    t    1] 0 0 1 0 P’(0) 
1 0 0 0 P’(1) 

Constant matrix for n = 3 geometry matrix 

Where P(0) = Coordinates of the first point at t = 0 
P(1) = coordinates of the last point at t = 1 
P’(0) = values of the slopes in x, y, z directions at t = 0 
P’(1) = values of the slopes in x, y, z directions at t = 1 

Analogous to a cubic curve, a parametric cubic surface can be defined by 16 points: 

- 4 points for coordinates of the corner points 
- 8 points for slopes in the s & t directions 
- 4 points for twist vectors (second derivatives) 

Using a procedure similar to the one carried out in the derivation of the cubic curve, we 
can derive the geometric coefficient matrix for the surface, which is given as, 

P(0,0)  P(0,1)  Pt(0,0)  Pt(0,1) 
 P(1,0)  P(1,1)  Pt(1,0)  Pt(1,1) 

[G]H =   Ps(0,0)  Ps(0,1)  Pst (0,0) Pst(0,1) 
 Ps(1,0)  Ps(1,1)  Pst(1,0)  Pst (1,1) 

Which can be broken into 4 groups as, 

       Position of corner points,  Derivatives w.r.t. t of corner points 

Derivatives w.r.t s at corner points, Cross derivatives at corner points 
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Twist vectors, not shown here, are the partial derivatives:  dPs/dt & dPt/ds. These vectors 
control the internal shape of the surface. 

With the geometric coefficient matrix defined, the equation of the surface can be written  
as, 

P(s.t) = [s] [M]H [G]H [MH]T [t]T 

 Where:  [s] = [s3   s2   s   1] 
[M]H = [Constant matrix for n = 3 ] 
[MH]T = Transpose of [M]H 
[G]H = Geometry matrix as defined by the 16 points, and 

t3

[t]T =   t2  
 t 
 1

Example:  

Given: A parametric cubic surface is defined by its Cartesian components as follows: 

3 0 1 1 t3

1 0 0 1 t2

x(s,t)   =     [s3   s2   s   1]    2 1 1 1 t 
0 2 -1 0 1 

1 1 1 1 t3

1 0 0 0 t2

y(s,t)   =     [s3   s2   s   1]    2 3 0 0 t 
1 2 0 2 1 

0 1 2 3 t3

1 0 2 0 t2

z(s,t)   =     [s3   s2   s   1]    3 1 2 1 t 
1 0 1 1 1 
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Obtain the normal vector at the point where s = ½, t = ½ 

Solution: 

P(s,t) = [S] [M]H [G]H [MH]T [t]T  =  [x(s,t), y(s,t), z(s,t)] 

X(s,t) = [s] [A]x [t]T 

Where [A]x = [M]H [G]H [MH]T 

The normal vector n is given by 

n = Psx Pt

where Ps = ∂P/ds  & Pt = ∂P/dt 

3 0 1 1 t3

1 0 0 1 t2

x(s,t)   =     [s3   s2   s   1]    2 1 1 1 t 
0 2 -1 0 1 

3 0 1 1        t3

1 0 0 1        t2

 xs(s,t)   =     [3s2   2s   1   0]    2 1 1 1        t          
0 2 -1 0        1 

3 0 1 1 3t2

1 0 0 1 2t
 xt(s,t)   =     [s3   s2   s   1]    2 1 1 1 1 

0 2 -1 0 0 

at s = 0.5 & t = 0.5 
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 xs(s,t) = 4.5313 

 xt(s,t) = 3.3438 

similarly, we can evaluate ys(s,t), yt(s,t), zs(s,t) and zt(s,t) 

 ys (s,t) = 2.5313 

yt (s,t) = 5.5313 

zs (s,t) = 6.9375 

zt (s,t) = 5.4375 

And, Ps(s,t) = [4.5313, 2.5313, 6.9375] 
 Pt(s,t) = [3.3438, 5.5313, 5.4375] 

i j k 
n = Ps(0.5,0.5) x Pt(0.5,0.5)    =  4.5313  2.5313  6.9375  

3.3438  5.5313  5.4375 

= -24.61 i - 1.4413j + 16.59 k 
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5.11 Bezier Surface 

Just as parametric cubic curves are extended to parametric cubic patches, Bezier curves 
may be extended to Bezier surface patch. While the surface passes through the four 
corner points, the control points control all other points on the surface. 
Using the placement of these points to specify edge slope is more intuitive than 
determining the parametric slopes and twist vectors for the parametric cubic curve 
surface. 
Bezier surface, as a result, is easier to use because the control points themselves 
approximate the location of the desired surface. Bezier surfaces can be generated with 
any order of the Bezier curve. Two surface patches can be joined and the two surfaces do 
not have to be of the same order, one can be cubic and the other a quadratic. 
Blending Bezier patches with slope continuity requires that (1) control points on the 
common edges be shared and (2) three control points – one on the edge and ones on the 
either sides of the edge – form a straight line, as shown in the figure below. 

v 

u 

BEZIER SURFACES 

P14 

P24 

P44  

P34  

P21  P31  

P54  

P41  
P51 P61 

P71 

P72  

P64  

P73  

P74  
P13 

P12 

P43  

P11  

P42 

z  

y 

x  

Two blended Bezier patches.  Control points P41, P42, P43 and P44 are 
shared by both patches.  Slope continuity  between the two patches is 
maintained by having each group of three control points which cross the 
shared edge (P31, P41, P51, etc.)  lie on straight lines. 

In Bezier surface: 
o The surface takes the general shape of the control points.
o The surface is contained within the convex hull of the control points.
o The corner of the surface and the corner control points are coincident.

General Equation of the Bezier surface is given as, 

Q(s,t) =  Σ Σ Vi,j Bi,n(s) Bj,m(t) 

0 ≤ s,t ≤1 

Vi,j defines the control points 

Handbook on Computer Aided Design  by R. B. Agarwal 5-21 



Chapter 5 - Surfaces 

Bi,n(s) & Bj,m(t) are the Bernstein blending functions in the s and t directions. 

In matrix form, the Bezier surface can be represented by, 

Q(s,t) = [S] [M]B [V]B  [([M)T]B
  [t]T 

For a cubic surface this equation reduces to: 

-1     3    -3 1 v0,0 v0,1 v0,2 v0,3 
-3    -6    3 0 v1,0 v1,1 v1,2 v1,3 

Q(s,t) = [s3   s2   s   1]      3      3    0  0 v2,0 v2,1 v2,2 v2,3       x 
   1 0    0  0 v3,0 v3,1 v3,2 v3,3 

 1 3 -3 1 t3

   3 -6 3 0 t2

-3 3 0 0 t 
 1 0 0 0 1

Note that, to represent a cubic Bezier surface, 16 control points must be specified, and 
several Bezier surfaces can be combined to create a complex surface. 
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CHAPTER 6 

SOLID modelling 

6.1 Application of Solid Models 
In mechanical engineering, a solid model is used for the following applications: 

1. Graphics: generating drawings, surface and solid models
2. Design: Mass property calculation, interference analysis, finite element

modelling, kinematics and mechanism analysis, animation, etc.
3. Manufacturing: Tool path generation and verification, process planning,

dimension inspection, tolerance and surface finish.
4. Component Assembly: Application to robotics and flexible manufacturing:

Assembly planning, vision algorithm, kinematics and dynamics driven by solid
models.
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6.2   Solid Model Representation 
There are three different forms in which a solid model can be represented in CAD: 

• Wireframe Model
• Surface Model
• Solid Model

Wireframe Models: Joining points and curves creates wireframe models. These models  
can be ambiguous and unable to provide mass property calculations, hidden surface 
removal, or generation of shaded images. Wireframe models are mainly used for a quick 
verification of design ideas. 

Surface Models: Surface models are created using points, lines, and planes. A surface 
model is unable to identify points that do not lie on the surface, and therefore, the 
moment of inertia, volume, or sections of the model cannot be obtained. A surface 
model can be shaded for better visibility. Surface models are used for modelling surfaces 
of engineering components. 

Solid models: Solid models are the most preferred form of CAD models. and represent 
unambiguous image of a component. A solid model can be used to analyze the moment 
of inertia, mass, volume, sections of the model, etc. 

Solid models are mathematical models of objects in the real world that satisfy specific 
properties, listed below. 

1. Bounded: The boundary must limit and contain the interior of the solid.
2. Homogeneously Three-Dimensional: No dangling edges or faces be present so

that the boundary is always in contact with the interior of the solid.
3. Finite: The solid must be finite in size.
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6.3   Solid Model Creation Scheme 
A solid model can be generated by the following schemes. 

1. Constructive Solid Geometry (CSG)
2. Boundary Representation (B-Rep)
3. Sweeping

A brief description of these schemes follows. 

6.3.1 Constructive Solid Geometry Scheme 
This scheme is based on the principle that two primitives can be combined to produce a 
new solid model. This method is also known as ‘Building Block’ method. The scheme 
uses the Union, Intersection, and Subtraction techniques to create three-dimensional 
models, which are based on the Boolean operation. The steps involved in generating a 
solid model are: 

1. Select the primitives from a library
2. Go through the scaling, dimension modification, and any other transformations.
3. Combine the primitives to create the desired solid model.

Since CSG method uses solid primitives, internal details of the object are automatically 
contained in the model. The model can be sectioned to reveal internal details and can be 
used for calculating mass, volume, moment of inertia, etc. 

New solid models can be created from the primitives or other solid models by the 
following operations: 

• Union (U): Two solids are joined and the common volume of one of the
primitives is neglected in the resulting solid.

• Subtraction or Difference (-): One solid is subtracted from the other and the
resultant solid retains only the uncut portion of the solid.

• Intersection (П): When two solids are combined, the resultant solid represents
the common volume of the two solids.

The most common primitive solids found in a CAD program are: 
Block, Cylinder, Cone, Sphere, Wedge, and Torus. 

6.3.2 Boundary Representation (B-Rep) Scheme 
This scheme is based on the concept that a physical object is bounded by a set of faces. A 
solid model is created by combining faces and contains vertices, edges, loops, and bodies. 
Only the boundary surfaces of the model are stored and the volumetric properties are 
calculated by the Gauss Divergence theorem, which relates volume integral to surface 
integrals. This scheme can model a variety of solids depending on the primitive surfaces 
(planar, curved, or sculptured). There are two types of solid models in this scheme: 
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1. Polyhedral solids
2. Curved solids

1. Polyhedral Solids: Polyhedral models consist of straight edges, e.g., a non-cylindrical
surface: box, wedge, combination of two or more non-cylindrical bodies, etc. Polyhedral 
solids can have blind or through holes, and two or three-dimensional faces, with no 
dangling edges. A valid polyhedral abides by the Euler’s equation: 

F – E + V – L = 2 (B-G) 

Where, 

F = Face 
E = Edge 
V = Vertices 
L = Inner Loop 
B = Bodies 
G = Through holes 

A simple polyhedral has no holes; each face is bounded by a single set of connected 
edges (bounded by one loop of edges). 

Euler’s equation for a simple polyhedral can be reduced to: F - E + V = 2 

Example: For the box shown, F = 6, E = 12, and V = 8 

Examples of other types of polyhedral are shown below. 

 Polyhedral with two loops Polyhedral with a blind hole 

2. Curved Solids: A curved solid is similar to a polyhedral object but it has curved
faces and edges. Spheres and cylinders are examples of curved solids. 

          Sphere with F = 1, V = 1, E = 0             Cylinder: F = 3, E = 3, V= 2 
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Primitives: In B-rep, a model is made up of the following primitives: 

• Vertex: A point in space
• Edge: A finite, no-intersecting space curve bounded by two vertices that are not

necessarily distinct.
• Face: A finite connected, non-self-intersecting, region of a closed oriented

surface, bounded by one or more loops.
• Loop: An ordered alternating sequence of vertices and edges. A loop defines a

non-self-intersecting closed space curve, which may be a boundary of a face.
• Body: Entity that has faces, edges and vertices. A minimum body is a point.

B-rep scheme is closely related to the traditional drafting method.  

6.3.3 Sweeping Scheme 
 Sweeping can create a solid model. The method is useful for creating 2 ½ – dimension 
models. The generated models are axisymmetric and have uniform thickness (i.e., 
extruded models). There are two types of sweeps: linear and rotational. In linear sweep, a 
closed 2-D sketch is extruded through the desired length, creating a homogeneous and 
axisymmetric model, as shown in the figure. 

       Sweep direction 

   Linear sweep – Creating a box by sweeping a rectangle 

In rotational sweep, a closed sketch is rotated around an axis. The generated model is 
always axisymmetric. 

In addition to the two sweeps described above, a model can also be created by a non-
linear sweep. In this type of sweep, a closed sketch is swept along a non-linear path. 
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6.4  Commercial Modelers 
Most commercial software use the sweeping scheme. ProE and Solidworks are good 
examples of software that utilize sweep technique to generate a 3-D model. In both of 
these programs, a 2-D sketch is created and extruded to generate a 3-D base-model. The 
base model is then used to add or modify features. Most engineering components can be 
created by this technique. 

Relatively new software, Ironcad utilizes the CSG technique to create 3-D models. There 
are pre-build models in the library (catalog) of the software that can be retrieved and 
modified as needed. The availability of the primitives (basic solid models) accelerates the 
process of model generation. 

All the three software mentioned above are parametric modelers. Another popular 
software, AutoCAD is capable of generating 3-D models; however, this software is 
basically a 2-D modeler and lacks the parametric feature. AutoCAD is capable of creating 
a solid model with CSG, B-rep, and the sweep methods, but limited to only very simple 
models. 
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CHAPTER 1

An Overview of the Finite Element Analysis 

1.1 Introduction 

Finite element analysis (FEA) involves solution of engineering problems using 
computers. Engineering structures that have complex geometry and loads, are either very 
difficult to analyze or have no theoretical solution. However, in FEA, a structure of this 
type can be easily analyzed. Commercial FEA programs, written so that a user can solve 
a complex engineering problems without knowing the governing equations or the 
mathematics; the user is required only to know the geometry of the structure and its 
boundary conditions. FEA software provides a complete solution including deflections, 
stresses, reactions, etc. 

In order to become a skillful FEA user, a thorough understanding of techniques for 
modelling a structure, the boundary conditions and, the limitations of the procedure, are 
very crucial. Engineering structures, e.g., bridge, aircraft wing, high-rise buildings, etc., 
are examples of complex structures that are extremely difficult to analyze by classical 
theory. But FEA technique facilitates an easier and a more accurate analysis. In this 
technique the structure is divided into very small but finite size elements (hence the 
name finite element analysis). Individual behavior of these elements is known and, based 
on this knowledge; behavior of the entire structure is determined. 

FEA solution of engineering problems, such as finding deflections and stresses in a 
structure, requires three steps: 

1. Pre-process or modelling the structure
2. Analysis
3. Post processing

A brief description of each of these steps follows. 

Step1: Pre-process or modelling the structure 
Using a CAD program that either comes with the FEA software or provided by another 
software vendor, the structure is modeled. The final FEA model consists of several 
elements that collectively represent the entire structure. The elements not only represent 
segments of the structure, they also simulate it’s mechanical behavior and properties. 
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Regions where geometry is complex (curves, notches, holes, etc.) require increased 
number of elements to accurately represent the shape; where as, the regions with simple 
geometry can be represented by coarser mesh (or fewer elements). The selection of 
proper elements requires prior experience with FEA, knowledge of structure’s behavior, 
available elements in the software and their characteristics, etc. The elements are joined 
at the nodes, or common points. 

In the pre-processor phase, along with the geometry of the structure, the constraints, loads          
and mechanical properties of the structure are defined. Thus, in pre-processing, the entire 
structure is completely defined by the geometric model. The structure represented by 
nodes and elements is called “mesh”.  

Step 2: Analysis  
In this step, the geometry, constraints, mechanical properties and loads are applied to 
generate matrix equations for each element, which are then assembled to generate a 
global matrix equation of the structure. The form of the individual equations, as well as 
the structural equation is always,  

{F} = [K]{u} 

Where 
           {F} = External force matrix. 

[K] = Global stiffness matrix 
{u} = Displacement matrix 

The equation is then solved for deflections. Using the deflection values, strain, stress, and 
reactions are calculated. All the results are stored and can be used to create graphic plots 
and charts in the post analysis. 

Step 3: Post processing  
This is the last step in a finite element analysis. Results obtained in step 2 are usually in 
the form of raw data and difficult to interpret. In post analysis, a CAD program is utilized 
to manipulate the data for generating deflected shape of the structure, creating stress 
plots, animation, etc. A graphical representation of the results is very useful in 
understanding behavior of the structure 
. 

1.2 History of FEA  

Engineering applications of finite element analysis is approximately 40 years old. 
Evolution of FEA is tied with the development in computer technology. With the 
enhancement in computer speed and storage capacity, FEA has become a very valuable 
engineering tool. NASA is credited for developing comprehensive FEA software in 
1960’s, known as NASTRAN. Rights of the software were purchased by  
McNeal Schwendler Corporation, who refined it and commercially marketed it under the 
name, MSC-NASTRAN. The first college course in FEA was offered in 1970. In the 
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early 1970’s, application of FEA was limited to large corporations, who can afford 
expensive mainframe computers. However, in 1980’s, with the introduction of desktop 
computers, application of FEA became popular and indispensable engineering tool. In 
late 80’s, almost all the major FEA vendors introduced their software that can run on a 
PC. 

In the past ten years, there were several significant development in FEA, including: 
. 
• Introduction of P- elements.
• Integration of sensitivity analysis and optimization capabilities.
• Availability of faster and cheaper desktop computers to run FEA software that

previously required mainframe computers.
• Development of powerful CAD programs for modelling complex structures.
• Making software user-friendly.

1.3 How FEA works – Within software 

The following steps can summarize FEA procedure that works inside software: 

Using the user’s input, the given structure is graphically divided into small
elements (sections or regions) so that each and every element’s mechanical
behavior can be defined by a set of differential equations.
The differential equations are converted into algebraic equation, and then into
matrix equations, suitable for a computer-aided solution.
The element equations are combined and a global structural equation is obtained.
Appropriate load and boundary conditions, supplied by the user, are incorporated
in to the structural matrix.
The structural matrix is solved and deflections of all the nodes are calculated.
A node can be shared   by several elements and the deflection at the shared node
represents deflection of the sharing elements at the location of the node.
Deflection at any other point in the element is calculated by interpolation of all
the node points in the element.
An element can have a linear or higher order interpolation function.
The individual element matrix equations are assembled into a combined structure
equation of the form {F}=[k]{u}.

As defined earlier,  

{F} = Column matrix of the externally applied loads. 

[k] = Stiffness matrix of the structure, which is always a symmetric matrix. 
This matrix is analogues to an equivalent spring constant of several connected 
springs. 
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{u} = Column matrix representing the deflection of all the node points, that 
results when the load {F} is applied. 

1.4 How FEA works – User’s interaction 

The above described software procedure is mostly transparent to the user. A user has the 
following interaction with the software, through user’s computer. 

Create the geometry, representing the structure: A CAD modelling software
is used to create the structure’s geometry.
Provide the material properties, loads, constraints, etc.
Analyze the result data.

1.5 Convergence – Assuring Optimum Mesh Size 

How do we determine the exact number of elements for a structure and make sure that the 
FEA mesh is optimum? There is no exact answer to this question; however, if we keep 
refining a mesh until the variation in the result is less than a specified value, we will 
reach the desirable mesh density. Convergence refers to this process, where we optimize 
the mesh to arrive at the desired results. In general, there are three types of convergences: 

1. Von-Mises Stress (VMS) convergence: Mesh is refined until the percentage
variation in VMS is less than 1, 5, 10 or any given value selected by the user.
VMS convergence should be avoided if there are stress concentration points,
convergence will be difficult to achieve.

2. Strain Energy Convergence: Mesh is refined until the percentage variation in
the average strain of elements is less than a chosen value. Strain convergence is a
better criterion for optimizing an FEA mesh. Stress concentrations points do not
significantly influence the average strain energy of elements and variation in
strain energy is influenced by mesh size or polynomial order of the elements only.

3. Deflection Convergence: It is similar to the above convergences, except, node
deflection values are used for the convergence criterion.

1.6 H- versus P- elements  

In FEA, there are two types of elements:  
1. H-elements and,
2. P-elements

H-element is the original and “classic” element. The name is derived from the field of 
numerical analysis, where the letter ‘h’ is used for the step size, to achieve convergence 
in the analysis. The h-element is always of low order, usually, linear or quadratic. When a 
finite element mesh is refined to achieve convergence, the procedure is called h-
convergence. For h-elements, convergence is accomplished at the expense of excessively 
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large number of elements. The high stress concentration regions require a very fine mesh, 
thereby increasing the number of elements. Finite elements used by commercial programs 
in the 1970s and 80s, were all h-elements. However, with improvement in computer 
power and efficiency, a much more useful, p-elements were developed.  

P-elements are relatively new, developed in late 1980s and offer not only the traditional 
static analysis, they provides option of optimizing a structure. P-elements can have edge-
polynomial as high as 9th order, unlike the low order polynomials of h-elements. The high 
polynomial edge order of p-elements makes it possible to model a curved edge of a 
structure with accuracy. Therefore, fewer elements can be used to achieve convergence. 
In FEA, the number of elements in the mesh usually remains fixed; convergence is 
achieved by increasing the polynomial order of the p-elements, rather than refinement of 
the mesh. For optimization, as the dimensions of the structure being analyzed are 
changed, the number of elements remains constant. Only, the polynomial order of the 
elements is changed as needed.  

1.7 Bottom-up and Top-down approach 

When modelling a structure (creating an FEA model), bottom – up approach refers to 
creation of model by defining the geometry of the structure with nodes and elements. 
These nodes and elements represent the physical structure. When an FEA model is 
created by this procedure, it is known as a bottom-up approach. This is the original 
procedure for creating FEA mesh, and requires a substantial investment in time and skill. 
When this method is employed, most of analyst’s time is devoted to creation of the 
mesh, and only a fraction of time is spent for analysis and results interpretation.  

In FEA, a top-down procedure refers to creation of FEA mesh by first building a solid 
model, using a 3-D CAD program, and then dividing the model into nodes and elements. 
Thus, the top-down method requires building of a geometric model of the structure and 
then using it to create an FEA mesh. The advantages of the top-down approach are 
obvious; we don’t have to define the geometry of individual elements in the structure, 
which can be very time consuming. Obviously, a 3-D model requires high-end computer 
hardware, along with familiarity with the modelling software. 

1.8 Discretization or Division of a structure into small elements 

In FEA, an engineering structure is divided into small elements. These elements coincide 
with the geometry of the structure and represent the geometry and the mechanical 
properties in the regions. 

Selection of elements to represent the structure is a matter of engineering judgement and 
prior experience with FEA procedure. A sound advice for beginners is: keep the elements 
size small enough to yield good results and yet large enough to reduce computational 
time. Smaller elements are desirable where the results are changing rapidly (change in 
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geometry, sharp corners, etc.). Large elements can be used where the results (deflection 
or stresses) are relatively constant. 

In FEA, discretization of a structural model is another name for mesh generation. Most of 
the commercial FEA programs have the capability of automatically generating FEA 
mesh. User has to provide the element type, mechanical properties, constraints and loads. 

1.9 Element types 

Let us assume that we wish to find stress concentration in a steel plate with holes. For the 
FEA analysis of this plate, we would need elements that have shapes of triangular plates, 
quadrilateral plates, and plates with curved edge. Then these elements can replace and 
represent each and every part of the plate, including the circular edges near the hole. 

Plate with a hole 

Thus, we need elements that have geometric shape similar to the real structure or region 
of the structure that is being modeled. One geometric shape cannot represent all possible 
engineering structural shapes. Therefore, we need elements that look like a plate, beam, 
cylinder, sphere, etc. However, in FEA, almost all structures can be approximated by the 
following basic elements: 

1. Line elements: Element consisting of two nodes.

Example: Truss and beam elements.  

In computers, a line, connecting two nodes at its ends as shown, represents a line 
element. The cross-sectional area is assumed constant throughout the element. 

k

    i j 

j
i
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The element can have more than two nodes, and can be a curved rather than a straight 
line. 

2. 2-D solid elements: Elements that have geometry similar to a flat plate.

Example: Plane stress, plain strain, plates, shells, and axisymmetric elements.  

2-D solid elements are plane elements, with constant thickness, and have either a 
triangular or quadrilateral shape, with 3 nodes or 4 nodes as shown.

k l k

i j
i j

   2-D Solid: Triangular   2-D Solid: Quadrilateral 

 For higher order 2-D elements, the number of nodes can vary. For example, the element 
edges can be quadratic with 3 nodes on each edge. However, in most FEA analysis, only 
the straightedge elements are used.  

Loads on 2-D solid elements can be applied only in its plane, and deflections also occur 
only in the plane of the elements. 

Axisymmetric element is a special case of 2-D plane stress element. We will discuss this 
element in detail later on. 
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3. 3-D solid elements: Element that have a 3-D geometry.

Example: Tetrahedron and hexahedron elements.  

The basic 3-D solid elements have either a tetrahedral (4 faces) or hexahedral (6 faces) 
shape, as shown.      

Tetrahedral -  4-nodes Hexahedral - 8-nodes 

The basic elements have corner nodes and straight edges, but the number of nodes and 
edge geometry can vary. 

NOTES 

1 For an accurate analysis in FEA, selection of the proper elements is very important. 
The selected elements must represent the engineering structure as close to the 
original structure as possible.  

2 In addition to these basic elements, there are some special application elements, e.g., 
mass element and contact element. Almost all other special purpose elements can be 
derived from the three basic groups of the elements described above. 
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      CHAPTER 2  

The Basic FEA Procedure 

2.1 Introduction 

This chapter discusses the spring element, especially for the purpose of introducing 
various concepts involved in use of the FEA technique. A spring element is not very 
useful in the analysis of real engineering structures; however, it represents a structure in 
an ideal form for an FEA analysis. Spring element doesn’t require discretization (division 
into smaller elements) and follows the basic equation F = ku. We will use it solely for the 
purpose of developing an understanding of FEA concepts and procedure. 

2.2 Overview 

Finite Element Analysis (FEA), also known as finite element method (FEM) is based on 
the concept that a structure can be simulated by the mechanical behavior of a spring in 
which the applied force is proportional to the displacement of the spring and the 
relationship F = ku is satisfied.  In FEA, structures are modeled by a CAD program and 
represented by nodes and elements. The mechanical behavior of each of these elements 
is similar to a mechanical spring, obeying the equation,  F = ku. Generally, a structure is 
divided into several hundred elements, generating a very large number of equations that 
can only be solved with the help of a computer. 

The term ‘finite element’ stems from the procedure in which a structure is divided into 
small but finite size elements (as opposed to an infinite size, generally used in 
mathematical integration). The endpoints or corner points of the element are called nodes. 
Each element possesses its own geometric and elastic properties. Spring, Truss, and 
Beams elements, called line elements, are usually divided into small sections with nodes 
at each end. The cross-section shape doesn’t affect the behavior of a line element; only 
the cross-sectional constants are relevant and used in calculations. Thus, a square or a 
circular cross-section of a truss member will yield exactly the same results as long as the 
cross-sectional area is the same. Plane and solid elements require more than two nodes 
and can have over 8 nodes for a 3 dimensional element. 
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A line element has an exact theoretical solution, e.g., truss and beam elements are 
governed by their respective theories of deflection and the equations of deflection can be 
found in an engineering text or handbook. However, engineering structures that have 
stress concentration points e.g., structures with holes and other discontinuities do not 
have a theoretical solution, and the exact stress distribution can only be found by an 
experimental method. However, the finite element method can provide an acceptable 
solution more efficiently. Problems of this type call for use of elements other than the line 
elements mentioned earlier, and the real power of the finite element is manifested. In 
order to develop an understanding of the FEA procedure, we will first deal with the 
spring element. In this chapter, spring structures will be used as building blocks for 
developing an understanding of the finite element analysis procedure. Both spring and 
truss elements give an easier modelling overview of the finite element analysis 
procedure, due to the fact that each spring and truss element, regardless of length, is an 
ideally sized element and do not need any further division. Therefore, in the following 
sections spring structures will be used to illustrate the finite element analysis procedure. 

2.3 Understanding Computer and FEA software interaction -   
Using the Spring Element as an example 

In the following example, a three-element structure is analyzed by finite element method. 
The analysis procedure presented here will be exactly the same as that used for a complex 
structural problem, except, in the following example, all calculations will be carried out 
by hand so that each step of the analysis can be clearly understood. All derivations and 
equations are written in a form, which can be handled by a computer, since all finite 
element analyses are done on a computer. The finite element equations are derived using 
Direct Equilibrium method. The example illustrates the interaction between computer and 
the FEA software used for solution. 

Example 2.1 

Two springs are connected in series with spring constant k1, and k2 (lb./in) and a force F 
(lb.) is applied. Find the deflection at nodes 2, and 3.  

         k1             k2 
F 

       1 2   3 

Figure 2.1 
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Solution: 

For finite element analysis of this structure, the following steps are necessary: 

Step 1: Derive the element equation for each spring element. 

Step 2: Assemble the element equations into a common equation, knows as the global 
or Master equation. 

Step 3: Solve the global equation for deflection at nodes 1 through 3. 

Step 1: Derive the element equation for each spring element. 

First, a general equation is derived for an element e that can be used for any spring 
element and expressed in terms of its own forces, spring constant and node deflections, as 
illustrated in figure 2.2. 

             ui uj 

               fi   fj 

           e 

Figure 2.2 

Element ‘e’ can be thought of as any element in the structure with nodes i and j, forces fi
and fj, deflections ui and uj, and the spring constant ke. Node forces fi and fj are internal 
forces and are generated by the deflections ui and uj at nodes i and j, respectively. 

For a linear spring f = ku, and 

fi = ke(uj – ui) = -ke(ui-uj) = - ke ui + ke uj 

For equilibrium,  fj = -fi = ke(ui-uj) = ke ui - ke uj 

Or -fi =    ke ui - ke uj

- fj = - ke ui + ke uj 

Writing these equations in a matrix form, we get 

i ie e

j je e

f uk k
f uk k

− −   
=   − −   
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The  above matrix equation is a general form of an equation of a spring elements, and can 
be used to derive element equations for any spring element in this example, and in 
general, it is valid for any linear spring element. Thus, equations for each elements can be 
written as follows: 

Element 1:   
k1 

f1         f2 
       1        2 

Where, the superscript on the force matrix indicates the corresponding element. 

Element 2: 
k2 

f2         f3 
       2        3 
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Thus, 

f1
(1) = -k1(u1 – u2)                f2

(1) = k1(u1-u2) 
f2

(2) = -k2(u2 – u3)                f3
(2) = k2(u2-u3) 

This completes the procedure for step 1. 

Note that f3 = F (lb.). This will be substituted in step 2. The above equations represent 
individual elements only and not the entire structure. 
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Step 2 : Assemble the element equations into a global equation. 

The basis for combining or assembling the element equation into a global equation is the 
equilibrium condition at each node. When the equilibrium condition is satisfied by 
summing all forces at each node, a set of linear equations is created which links each 
element force, spring constant, and deflections. In general, let the external forces at each 
node be F1, F2, and F3, as shown in figure 2.3. Using the equilibrium equation, we can 
find the element equations, as follows. 

Node 2:  ∑F = 0 = f2
(1) + f2

(2) + F2 

 Or  F2 = -f2
(1) – f2

(2) = 
     = -k1(u1 – u2) + k2(u2 – u3)   
     = -k1u1 – k1u2 + k2u2 – k2u3

 
Node 3:  ∑F = 0 ,  f3

(2) + F3 = 0 

 Or  F3 = -f3
(2)

 = -k2 (u2 - u3)  

1 1

1 1 1 1 2 1 1 1

1: 0
( )

Node F f F
or F f k u u k u k u

= = +

= − = − = −
∑

2

  Figure 2.3              

The superscript “e” in force fn
 (e) indicates the contribution m

e, and the subscript “n” indicates the node “n” at which force
Rewriting the equations, we get, 

k1 u1 – k1 u2  = F1 
- k1 u1 + k1 u2 + k2 u2 – k2 u3             = F2 

           - k2 u2 + k2 u3             = F3 
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F1
f1
 f2
(1

      

ade
s ar
Node 1
F2      

) f2
(2) 

Node 2 

 F3  

f3
(2) 

Node 3     

 by the element number 
e summed. 

(2.1) 
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These equations can now be written in a matrix form, giving 

 k1 - k1  0 u1         F1  
 - k1  k1+ k2           - k2 u2 =      F2 
 0 - k2  k2 u3         F3 

This completes step 2 for assembling the element equations into a global equation. At this 
stage, some important conceptual points should be emphasized and will be discussed 
below. 

2.3.1 Procedure for Assembling Element stiffness matrices 

The first term on the left hand side in the above equation represents the stiffness constant 
for the entire structure and can be thought of as an equivalent stiffness constant, given as 

k1 - k1  0   0 
      [Keq] = - k1 k1+ k2  - k2   0 

0 - k2 k2+ k3  - k3  
0 0  -k3   k3  

A single spring element with a value Keq will have an identical mechanical property as 
the structural stiffness in the above example. 

The assembled matrix equation represents the deflection equation of a structure without 
any constraints, and cannot be solved for deflections without modifying it to incorporate 
the boundary conditions. At this stage, the stiffness matrix is always symmetric with 
corresponding rows and columns interchangeable. 

The global equation was derived by applying equilibrium conditions at each node. In 
actual finite element analysis, this procedure is skipped and a much simpler procedure is 
used. The simpler procedure is based on the fact that the equilibrium condition at each 
node must always be satisfied, and in doing so, it leads to an orderly placement of 
individual element stiffness constant according to the node numbers of that element. The 
procedure involves numbering the rows and columns of each element, according to the 
node numbers of the elements, and then, placing the stiffness constant in its 
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corresponding position in the global stiffness matrix. Following is an illustration of this 
procedure, applied to the example problem. 

Element 1: 
1    2 k1

K(1) =      k1  -k1     1
-k1   k1     2 1 2 

Element 2: 
2      3 k2 

K(2) =       k2  -k2    2
-k2   k2    3  2 3 

Assembling it according with the above-described procedure, we get, 

1 2   3    4 

     1 k1 -k1     0 
      [ Kg ]     =       2    -k1 k1+ k2   -k2  

 3 0 -k2   k2  

Note that the first constant k1 in row 1 and column 1 for element 1 occupies the row 1 and column 1 
in the global matrix. Similarly, for element 2, the constant k2 in row 2 and column 2 occupies exactly 
the same position (row 2 and column 2) in the global matrix, etc. 

In a large model, the node numbers can occur randomly, but the assembly procedure remains the 
same. It’s important to place the row and column elements from an element into the global matrix at 
exactly the same position corresponding to the respective row and column. 

2.3.2 Force matrix 

At this stage, the force matrix is represented in a general form, with unknown forces F1, 
F2, and F3 

F1 
F2 
F3 
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Representing the external forces at nodes 1, 2, and 3, in general terms, and not in terms of 
the actual known value of the forces. In the example problem, F1 = F2 = 0 and F3 = F. the 
actual force matrix is then 

0 
0 
F 

Generally, the assembled structural matrix equation is written in short as {F}=[k]{u}, or 
simply, F = k u, with the understanding that each term is an m x n matrix where m is the 
number of rows and n is the number of columns. 

Step 3: Solve the global equation for deflections at nodes. 

There are two steps for obtaining the deflection values. In the first step, all the boundary 
conditions are applied, which will result in reducing the size of the global structural 
matrix. In the second step, a numerical matrix solution scheme is used to find deflection 
values by using a computer. Among the most popular numerical schemes are the Gauss 
elimination and the Gauss-Sedel iteration method. For further reading, refer to any 
numerical analysis book on this topic. In the following examples and chapters, all the 
matrix solutions will be limited to a hand calculation even though the actual matrix in a 
finite element solution will always use one of the two numerical solution schemes 
mentioned above. 

2.3.3 Boundary conditions 

In the example problem, node 1 is fixed and therefore u1 = 0. Without going into a 
mathematical proof, it can be stated that this condition is effected by deleting row 1 and 
column 1 of the structural matrix, thereby reducing the size of the matrix from 3 x 3 to 2 x 2. 
In general, any boundary condition is satisfied by deleting the rows and columns 
corresponding to the node that has zero deflection. In general, a node has six degrees of 
freedom (DOF), which include three translations and three rotations in x, y and z directions. 
In the example problem, there is only one degree of freedom at each node. The node deflects 
only along the axis of the spring. 

In this section, the finite element analysis procedure for a spring structure has been established. 
The following numerical example will utilize the derivation and concepts developed above. 
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Example 2.2 

In the given spring structure,  k1 = 20 lb./in., k2 = 25 lb./in., k3 = 30 lb./in., F = 5 lb. Determine 
deflection at all the nodes. 

         K1             k2       P    k3      F 

       1 2   3         4 

Figure 2.4 

Solution 

We would apply the three steps discussed earlier. 

Step 1: Derive the Element Equations 

As derived earlier, the stiffness matrix equations for an element e is, 

K(e) =       ke  -ke
-ke   ke   

Therefore, stiffness matrix of elements 1, 2, and 3 are, 

   1     2 
Element 1:     K(1)  =     20  -20   1 

-20   20   2 

Element 2:        1     2 
 K(2)  =      25  -25   1 

-25   25   2 
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Element 3:       
1    2

K(3)  =    30  -30   1
-30   30   2 

Step 2: Assemble element equations into a global equation 

Assembling the terms according to their row and column position, we get 

   1   2    3    4 
20 -20   0    0 1

      [Kg] =       -20    20+25 -25    0 2 
 0         -25      25+30  -30 3 
0 0  30   30 4 

              Or, by simplifying  

 20   -20     0    0 
      [Kg] = -20    45   -25    0 

  0    -25    55  -30 
  0      0     30   30 

The global structural equation is, 

        F1             20   -20     0      0         u1
        F2    =     -20    45   -25  0         u2 
        F3 0    -25    55   -30  u3 
        F4 0     0     30     30 u4 

Step 3: Solve for deflections 

First, applying the boundary conditions u1=0, the first row and first column will drop out. Next,  
F1= F2 = F3 = 0, and F4 = 5 lb. The final form of the equation becomes, 

        0           45   -25     0        u2
        0    =   -25    55   -30 u3 
        5          0    -30    30    u4 

This is the final structural matrix with all the boundary conditions being applied. Since 
the size of the final matrices is small, deflections can be calculated by hand. It should be 
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noted that in a real structure the size of a stiffness matrix is rather large and can only be 
solved with the help of a computer. Solving the above matrix equation by hand we get, 

0 = 45 u2 – 25 u3 
           u2           0.2500 

0 = -25 u2 + 55 u3 – 30 u4 Or       u3     =    0.4500 
           u4           0.6167 

            5 = -30 u3 + 30 u4 

Example 2.3 

In the spring structure shown k1 = 10 lb./in., k2 = 15 lb./in., k3 = 20 lb./in., P= 5 lb. Determine the 
deflection at nodes 2 and 3. 

         k1             k2    k3 

       1 2   3       4 

Figure 2.5 

Solution: 

Again apply the three steps outlined previously. 

Step 1: Find the Element Stiffness Equations 

Element 1: 
1     2 

    [K(1)] =    10  -10   1
-10   10   2 

Element 2: 2     3 
[K(2)]  =    15  -15   2

-15   15   3 

Element 3: 3     4 
[K(3)] =    20  -20   3

-20   20   4 
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Step 2: Find the Global stiffness matrix 

1 2 3 4 
     1      10      -10   0    0       10   -10     0      0 
     2     -10   10 + 15 -15    0      =   -10    25   -15     0 
     3  0       -15      15 + 20  -20        0   -15     35   -20 
     4  0         0          -20    20        0     0     -20    20 

Now the global structural equation can be written as, 

    F1      10   -10     0      0      u1  
    F2   =   -10    25   -15     0        u2 
    F3       0   -15     35   -20       u3 
    F4       0     0     -20    20       u4 

Step 3: Solve for Deflections 

The known boundary conditions are: u1 = u4 = 0, F3 = P = 3lb. Thus, rows and columns 1 and 4 will drop 
out, resulting in the following matrix equation, 

        0    =    25   -15     u3  
        3         -15    35    u3 

Solving, we get    u2 = 0.0692 & u3 = 0.1154    

Example 2.4 

In the spring structure shown, k1 = 10 N/mm, k2 = 15 N/mm, k3 = 20 N/mm, k4 = 25 N/mm, k5 = 30 
N/mm, k6 = 35 N/mm. F2 = 100 N. Find the deflections in all springs. 

k1

k3 
k2              F2 k6 Fig. 2.6 

k4 

k5 

1 2 3 4 
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Solution: 

Here again, we follow the three-step approach described earlier, without specifically 
mentioning at each step. 

Element 1:      1     4
    [K(1)] =    10  -10    1

-10   10    4 

 Element 2:  1     2 
   [K(2)] =     15   -15   1

-15    15   2 

Element 3: 2   3 
   [K(3)] =     20   -20   2

-20    20   3 

Element 4:  2    3 
   [K(4)] =     25   -25   2

-25    25   3 

Element 5:  2   4 
   [K(5)] =     30   -30   2

-30   30    4 

Element 6:  3   4 
   [K(6)] =     35   -35   3

-35   35    4 

The global stiffness matrix is, 

1     2    3      4 

10+15          -15         0             -10   1
      [Kg] =          -15     15+20+25+30     -20-25         -30   2 

    0            -20-25         20+25+35     -35   3 
 -10         -30        -35      10+30+35   4 

And simplifying, we get 

         25    -15     0    -10 
      [Kg] =    -15    90    -45   -30 

          0     -45    80   -35 
        -10   -30   -35     75 
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And the structural equation is, 

   F1       25   -15     0    -10          u1
   F2   =     -15    90   -45   -30          u2 
   F3         0   -45    80   -35          u3 
   F4      -10   -30   -35     75          u4

Now, apply the boundary conditions, u1 = u4 = 0, F2 = 100 N. This is carried out by 
deleting the rows 1 and 4, columns 1 and 4, and replacing F2 by 100N. The final matrix 
equation is, 

       100           90    -45        u2
         0      =   -45     80        u3 

Which gives 

         u2   =   1.5459  
         u3        0.8696 

Deflections: 

Spring 1: u4 – u1 = 0 

Spring 2:        u2 – u1 = 1.54590 

Spring 3:        u3 – u2 = -0.6763 

Spring 4:        u3 – u2 = -0.6763 

Spring 5:  u4 – u2 = -1.5459 

Spring 6:  u4 – u3 = -0.8696 

2.3.4 Boundary Conditions with Known Values 

Up to now we have considered problems that have known applied forces, and no known 
values of deflection. Now we will consider the procedure for applying the boundary 
conditions where, deflections on some nodes are known. Solutions of these problems are 
found by going through some additional steps. As discussed earlier, after obtaining the 
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structural global matrix equation, deflections are found by solving the equation by 
applying a numerical scheme in a computer solution. However, when there are known 
nodal values and unknown nodal forces, the method is not directly applicable. In this 
situation, the structural equation is first modified by incorporating all boundary 
conditions and then the final matrix equation is solved by a computer using a numerical 
method, as mentioned earlier. The following procedure traces the necessary steps for 
solving problems that involve known nodal values. 

2.3.5 Procedure for incorporating the known Nodal Values in the Final 
Structural Equation 

There are two methods that are frequently used for applying boundary conditions to a 
structural matrix equation. In one method, the matrices are partitioned into two parts with 
known and unknown terms. In the second method, the known nodal values are applied 
directly in the structural matrix. Both methods can be used with equal effectiveness. The 
first method will not be discussed here. Details of the second method follow. 

Consider the following linear equations, 

 k11u1 + k12u2 + k13u3 + k14u4 = F1  (2.2)
 k21u1 + k22u2 + k23u3 + k24u4 = F2 (2.3) 

k31u1 + k32u2 + k33u3 + k34u4 = F3 (2.4) 
k41u1 + k42u2 + k43u3 + k44u4 = F4 (2.5) 

These linear algebraic equations can be written in matrix form as follows. 

k11   k12   k13   k14        u1         F1  
 k21   k22    k23   k24     u2     =   F2

 k31   k32    k33   k34     u3  F3

 k41   k42    k43   k44 u4         F4

Let the known nodal value at node 2 be u2 = U2 (a constant), then by the linear spring 
equation  

F2 = k22 U2

Therefore, equation (2.2 – 2.5)) above can be reduced to k22u2 = k22U2 = F2 and the 
matrix with this boundary condition can be written as 

k11   k12    k13   k14       u1         F1  
 0      k22   0      0 u2     =   F2

 k31   k32    k33   k34     u3  F3

 k41   k42    k43   k44 u4         F4

A Handbook on Computer Aided Design . 2-15



Chapter 2 – The Basic FEA Procedure 

Now, equations 2.2, 2.4, 2.5 also contain the u2 term and therefore these equations must 
also be modified. We can modify equation 1 by transferring the term k12u2 to the right 
hand side and replacing u2 by U2. The modified equation can be written as 

 K11u1 + 0 + k13u3 + k14u4 = F1 – k12U2 

Similarly, equations 3 and 4 can be written as 

 K31u1 + 0 + k33u3 + k34u4 = F3 – k32U2 
K41u1 + 0 + k43u3 + k44u4 = F4 – k42U2 

The final matrix equation is 

   k11   0      k13   k14        u1         F1 – k1U2 
 0      k22   0      0 u2     =   k22U2

 k31   0    k33   k34 u3  F3 – k32U2 

 k41   0    k43   k44 u4        F4 – k42U2 

The dotted line indicates changes made in the enclosed terms. The final matrix remains 
symmetric and has the same size. The boundary conditions for forces can now be 
incorporated and a numerical solution scheme can be used to solve this equation. This 
procedure is summarized in the following simple, step-by-step approach. 

Given the known boundary conditions at node 2: ui = u2 = U2, follow these steps to 
incorporate the known nodal values. Note that, here, i = 2 and j = 1,2,3,4. 

Step 1: Set all terms in row 2 to zero, except the term in column 2 (kij = 0, kii = k22≠ 0) 

Step 2: Replace F2 with the term k22U2 (Fi = kiiui) 

Step 3: Subtract the value ki2 U2 from all the forces, except F2 ( subtract kji from the 
existing values of fj ), where i = 1, 3, and 4 

Step 4: Set all the elements in column 2 to zero, except, row2 (all kji = 0, kii # 0) 

The above procedure now will be applied in the following example problem. 
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Example 2.5 

In example problem 2.4 replace the force F by a nodal deflection of 1.5 mm on node 2 
and rework the problem. 

Solution 

Rewriting the final structural matrix equation in example 2.4, we have 

   F1       25   -15     0    -10          u1
   F2   =     -15    90   -45   -30          u2 
   F3         0   -45    80   -35          u3 
   F4      -10   -30  -35     75          u4 

Boundary condition are: u1 = u4 = 0, and u2 = U2 = 1.5mm. Applying the 4 steps 
described above in sequence, 

Step 1: Set all terms in row 2 to zero, except the term in column 2 (kij = 0, kii = k22 ≠ 0) 

    F1       25   -15     0    -10          u1

    F2    =     0     90     0      0             u2 
    F3         0   -45    80   -35          u3 
    F4      -10   -30   -35    75          u4 

Step 2: Replace F2 with the term k22 U2 = (90)(1.5) = 135, (Fi = kiiui) 

      F1         25   -15     0    -10        u1

    135   =     0      90     0      0         u2 
      F3         0     -45    80   -35        u3 
      F4        -10   -30   -35    75        u4 

Step 3: Subtract the value k22 U2 from all the forces, except F2 (subtract kji from the 
existing values of fj) 

F1  F1 – (15)(1.5) = 22.5       Row 1: kj2 = k12 =  -15 
F3  F3 – (-45)(1.5) = 67.5  Row 2: kj2 = k32 =  -45 
F4  F4 – (-30)(1.5) = 45  Row 2: kj2 = k42 =  - 30 
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Note: F1 = F3 = F4 = 0. 

The new force equation now is, 

      22.5 
      135           
      67.5 
       45             

Step 4: Set all the elements in column 2 to zero, except, row2 (all kji = 0, kii ≠ 0) 

Or, k12 = k32 = k42 = 0, and the new equation is, 

      22.5 25    0      0   -10        u1
      135     =      0    90     0     0         u2 
      67.5  0     0     80  -35        u3 
       45            -10    0   -35   75         u4 

This is the final equation after the nodal value u2 = 1.5 mm is incorporated into the 
structural equation. 

The same procedure can be followed for the boundary conditions u1 = u4 = 0. It can be 
stated that for zero nodal values, the procedure will always lead to elimination of rows 
and columns corresponding to these nodes, that is, the first and fourth rows as well as 
columns will drop out. The reader is encouraged to verify this statement. 

Thus, the final equation is, 

       90    0          u2     =        135 
               0     80         u3               67.5 

Solving for u2 and u3, we get 

 u2    =    1.5  
 u3          0.8437 

Spring deflection is: 

Spring 1:        u2 – u1 = 1.500 
Spring 2:               u3 – u1 = 0.8437 
Spring 3:               u3 – u2 = -0.6563 
Spring 4:               u3 – u2 = -0.6563 
Spring 5:         u4 – u2 = -1.500 
Spring 6:         u4 – u3 = -1.6875 
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2.3.6 Structures That can be Modeled Using a Spring Elements 

As mentioned earlier, almost all engineering materials are similar to a linear spring, 
satisfying the relation F = ku. Therefore, any structure that deflects only along its axial 
direction (with one degree of freedom) can be modeled as a spring element. The 
following example illustrates this concept. 

Example 2.6 

A circular concrete beam structure is loaded as shown. Find the deflection of points at 8”, 
16”, and the end of the beam. E =  4 x 106 psi 

y 

       12 in    3 in       50000 lb 
x 

    24 in 

Figure 2.7 

Solution 

The beam structure looks very different from a spring. However, its behavior is very 
similar. Deflection occurs along the x-axis only. The only significant difference between 
the beam and a spring is that the beam has a variable cross-sectional area. An exact 
solution can be found if the beam is divided into an infinite number of elements, then, 
each element can be considered as a constant cross-section spring element, obeying the 
relation F = ku, where k is the stiffness constant of a beam element and is given by    k = 
AE/L. 

In order to keep size of the matrices small (for hand- calculations), let us divide the beam 
into only three elements. For engineering accuracy, the answer obtained will be in an 
acceptable range. If needed, accuracy can be improved by increasing the number of 
elements. 

As mentioned earlier in this chapter, spring, truss, and beam elements are line-elements 
and the shape of the cross section of an element is irrelevant. Only the cross-sectional 
area is needed (also, moment of inertia for a beam element undergoing a bending load 
need to be defined). The beam elements and their computer models are shown in figure 
2.8. 
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Here, the question of which cross-sectional area to be used for each beam section arises. 
A good approximation would be to take the diameter of the mid-section and use that to 
approximate the area of the element. 

     k1       k2       k3 

k1        k2 k3
     1           2         3 

   1          2     2         3       3 4 

1 2 3      4 

  Beam sections Equivalent spring elements 

Figure 2.8 

Cross-sectional area 
The average diameters are: d1 = 10.5 in., d2 = 7.5 in., d3 = 4.5. (diameters are taken at the 
mid sections and the values are found from the height and length ratio of the triangles 
shown in figure 2.10), which is given as 

12/L = 3/(L-24), L = 32 

Average areas are: 

A1 = 86.59 in2  A2 = 56.25 in2  A3 = 15.9 in2 

24 in 

    12 in      d1      d2       d3 

3 in 

Original             Averaged        8         8       8 L- 24      

L 
Figure 2.9 Figure 2.10 

Stiffness 

k1 = A1 E/L1 = (86.59)(4 × 106/8) = 4.3295 ×107 lb./in., similarly, 
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k2 = A2 E/L2 = 2.8125 ×107 lb./in. 
k3 = A3 E/L3 = 7.95 ×106 lb./in. 

Element Stiffness Equations 

  [K(1)] = 43.295 × 107   1  -1
-1   1 

 Similarly, 

 [K(2)] = 28.125 × 106    1  -1
-1   1 

[K(3)] = 7.9500 × 106    1   -1
-1   1 

Global stiffness matrix is 

43.295        -43.295 0      0 
      [Kg] =      -43.295   43.295+28.125       -28.125        0  ×106   

  0              -28.125         28.125+7.95  -7.95 
  0            0            -7.95        7.95 

Now the global structural equations can be written as, 

43.295  -43.295        0           0            u1     F1 
            106 ×  -43.295    71.42     -28.125     0   u2    =    F2 

  0         -28.125    36.075   -7.95 u3   F3 
  0      0       -7.95      7.95 u4 F4 
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Applying the boundary conditions: u1 = 0, and F1 = F2 = F3 = 0,   F4 = 5000 lb., results in 
the reduced matrix, 

  71.42     -28.125     0             u2            0 
  106 ×   -28.125   36.075   -7.95         u3     =     0 

      0      -7.95      7.95          u4 5000 

Solving we get, 

u2    0.0012  
u3   =      0.0029      in. 
u4           0.0092 
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CHAPTER 3

Truss Element 

3.1 Introduction 

The single most important concept in understanding FEA, is the basic understanding of 
various finite elements that we employ in an analysis. Elements are used for representing 
a real engineering structure, and therefore, their selection must be a true representation of  
geometry and mechanical properties of the structure. Any deviation from either the 
geometry or the mechanical properties would yield erroneous results.  

The elements used in commercial codes can be classified in two basic categories: 

1. Discrete elements: These elements have a well defined deflection equation that can
be found in an engineering handbook, such as, Truss and Beam/Frame elements. The
geometry of these elements is simple, and in general, mesh refinement does not give
better results. Discrete elements have a very limited application; bulk of the FEA
application relies on the Continuous-structure elements.

2. Continuous-structure Elements: Continuous-structure elements do not have a well
define deflection or interpolation function, it is developed and approximated by using
the theory of elasticity. In general, a continuous-structure element can have any
geometric shape, unlike a truss or beam element. The geometry is represented by
either a 2-D or a 3-D solid element – the continuous- structure elements. Since
elements in this category can have any shape, it is very effective in calculation of
stresses at a sharp curve or geometry, i.e., evaluation of stress concentrations. Since
discrete elements cannot be used for this purpose, continuous structural elements are
extremely useful for finding stress concentration points in structures.

Element 

Figure 3.1 A Discrete element Structure Node  
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As explained earlier, for analyzing an engineering structure, we divide the structure into 
small sections and represent them by appropriate elements. Nodes always define 
geometry of the structure and elements are generated when the applicable nodes are 
connected. Results are always obtained for node points – and not for elements - which are 
then interpolated to provide values for the corresponding elements. 

For a static structure, all nodes must satisfy the equilibrium conditions and the continuity 
of displacement, translation and rotation. 

In the following sections, we will get familiar with characteristics of the basic finite 
elements. 

3.2  Structures & Elements 

Most 3-D structures can be analyzed using 2-D elements, which require relatively less 
computing time than the 3-D solid elements. Therefore, in FEA, 2-D elements are the 
most widely used elements. However, there are cases where we must use 3-D solid 
elements. In general, elements used in FEA can be classified as: 

- Trusses 
- Beams 
- Plates 
- Shells 
- Plane solids 
- Axisymmetric solids 
- 3-D solids 

Since Truss element is a very simple and discrete element, let us look at its properties and  
application first. 

3.3 Truss Elements 

The characteristics of a truss element can be summarized as follows: 

Truss is a slender member (length is much larger than the cross-section).
It is a two-force member i.e. it can only support an axial load and cannot support a
bending load. Members are joined by pins (no translation at the constrained node,
but free to rotate in any direction).
The cross-sectional dimensions and elastic properties of each member are
constant along its length.
The element may interconnect in a 2-D or 3-D configuration in space.
The element is mechanically equivalent to a spring, since it has no stiffness
against applied loads except those acting along the axis of the member.
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However, unlike a spring element, a truss element can be oriented in any direction
in a plane, and the same element is capable of tension as well as compression.

j 

i 

Figure 3.2  A Truss Element 

3.3.1 Stress – Strain relation: 

As stated earlier, all deflections in FEA are evaluated at the nodes. The stress and strain 
in an element is calculated by interpolation of deflection values shared by nodes of the 
element. Since the deflection equation of the element is clearly defined, calculation of 
stress and strain is rather simple matter. When a load F is applied on a truss member, the 
strain at a point is found by the following relationship. 

x 

 L
or, ε =  δL/L  

L + δL 

dx
du

=ε

   Figure 3.3  Truss member in Tension 

where,  ε = strain at a point 
u = axial displacement of any point along the length L 

By hook’s law, 

εσ E=

 Where, E = young’s modulus or modulus of elasticity. 

From the above relationship, and the relation,  
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F = Aσ 

the deflection,  δL, can be found as 

δL = FL/AE (3.1) 

Where,  F = Applied load 
A = Cross-section area 
L = Length of the element 

3.3.2 Treatment of Loads in FEA 

For a truss element, loads can be applied on a node only. If loads are distributed on a 
structure, they must be converted to the equivalent loads that can be applied at nodes. 
Loads can be applied in any direction at the node, however, the element can resist only 
the axial component, and the component perpendicular to the axis, merely causes free 
rotation at the joint. 

3.3.3 Finite Element Equation of a Truss Structure 

In this section, we will derive the finite element equation of a truss structure. The 
procedure presented here is the basis for all FEA analyses formulations, wherever h-
element are used. 

Analogues to the previous chapter, we will use the direct or equilibrium method for 
generating the finite element equations. Assembly procedure for obtaining the global 
matrix will remain the same.  

In FEA, when we find deflections at nodes, the deflections are measured with respect to 
a global coordinate system, which is a fixed frame of reference. Displacements of 
individual nodes with respect to a fixed coordinate system are desirable in order to see 
the overall deformed structural shape. However, these deflection values are not 
convenient in the calculation of stress and strain in an element. Global coordinate system 
is good for predicting the overall deflections in the structure, but not for finding 
deflection, strain, and stress in an element. For this, it’s much easier to use a local 
coordinate system. We will derive a general equation, which relates local and global 
coordinates.  

In Figure 3.4, the global coordinates x-y can give us the overall deflections measured 
with respect to the fixed coordinate system. These deflections are useful for finding the 
final shape or clearance with the surroundings of the structure. However, if we wish to 
find the strain in some element, say, member 2-7 in figure 3.4, it will be easier if we 
know the deflections of node 2 and 3, in the y’ direction. Thus, calculation of strain 
value is much easier when the local deflection values are known, and will be time- 
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consuming if we have to work with the x and y values of deflection at these nodes. 
Therefore, we need to establish a trigonometric relationship between the local and global 
coordinate systems. In Figure 3.4, xy coordinates are global, where as, x’y’ are local 
coordinates for element 4-7 

y 
  y’

  6 7              x’             8 Node 

Element 

1     2 3 4            5 x 

Fixed-Frame Origin

 Figure 3.4.  Local and Global Coordinates 

3.3.4 Relationship Between Local and Global Deflections 

Let us consider the  truss member, shown in Figure 3.5. The element is inclined at an 
angle θ, in a counter clockwise direction.  The local deflections are δ1 and δ2. The global 
deflections are: u1, u2, u3, and u4. We wish to establish a relationship between these 
deflections in terms of the given trigonometric relations. 

       u4 

δ2, R2 
u2 2  

u3

1 θ
u1

R1, δ1

Figure 3.5  Local and Global Deflections 
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By trigonometric relations, we have, 

δ1 = u1 cosθ + u2 sinθ = c u1 + s u2

δ2  = u3 cosθ + u4 sinθ = c u3 + s u4

where, cosθ = c, and sinθ = s 

Writing the above equations in a matrix form, we get, 

u1 
δ1 c s 0 0 u2 

= u3 (3.2) 
δ1 0 0 c s u4 

Or, in short form, δ      =   T       u 

Where T is called Transformation matrix. 

Along with equation (3.2), we also need an equation that relates the local and global 
forces.  

3.3.5 Relationship Between Local and Global Forces 

By using trigonometric relations similar to the previous section, we can derive the desired 
relationship between local and global forces. However, it will be easier to use the work-
energy concept for this purpose. The forces in local coordinates are: R1 and R2, and in 
global coordinates: f1, f2, f3, and f4, see Figure 3.6 for their directions. 

Since work done is independent of a coordinate system, it will be the same whether we 
use a local coordinate system or a global one. Thus, work done in the two systems is 
equal and given as, 

W = δT R = uT f,  or in an expanded form, 

     R1 f1

W =  δ1   δ2     =     u1    u1   u1    u1  f2 
     R2 f3

f4 

   =  {δ}T {R}                 = {u}T{f} 
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Substituting   δ      =   T         u    in the above equation, we get, 

[[T] {u}]T  {R}  =  {u}T {f}, or 

{u}T [T]T {R} = {u}T {f},  dividing by {u}T on both sides, we get, 

        [T]T {R} =  {f}     (3.3) 

Equation (3.3) can be used to convert local forces into global forces and vice versa. 

F4, u4

    R2, δ2 
f2, u2 2 

f3 u3

1 θ

R1, δ1               f1, u1 

Figure 3.6  Local and Global Forces 

3.3.6 Finite Element Equation in Local Coordinate System 

Now we will derive the finite element equation in local coordinate system. This equation 
will be converted to global coordinate system, which can be used to generate a global 
structural equation for the given structure. Note that, we can not use the element 
equations in their local coordinate form, they must be converted to a common coordinate 
system, the global coordinate system.   

Consider the element shown below, with nodes 1 and 2, spring constant k, deflections δ1,
and δ2, and forces R1 and R2. As established earlier, the finite element equation in local 
coordinates is given as, 

R1 k             -k         δ1 1 k     2 
        =               δ1,  R1

R2 -k k    δ1 δ2, R2 

Figure 3.7 A Truss Element 
Recall that, for a truss element, k = AE/L 
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Let ke =  stiffness matrix in local coordinates, then, 

AE/L -AE/L 
 ke = Stiffness matrix in local coordinates 

-AE/L AE/L 

3.3.7 Finite Element Equation in Global Coordinates 

Using the relationships between local and global deflections and forces, we can convert 
an element equation from a local coordinate system to a global system. 

Let kg = Stiffness matrix in global coordinates. 

In local system, the equation is: R = [ke]{ δ}   (A) 

We want a similar equation, but in global coordinates. We can replace the local force R 
with the global force f derived earlier and given by the relation: 

{f} = [TT]{R}  

 Replacing R by using equation (A), we get, 

{f} = [TT] [[ke]{ δ}],   

and δ can be replaced by u, using  the relation δ = [T]{u}, therefore,  

{f} = [TT] [ke] [T]{u} 

  {f} = [kg]  { u} 

Where, [kg]  = [TT] [ke] [T] 

Substituting the values of [T]T, [T],  and [ke], we get, 

   c 0 
[kg] =      s 0 AE/L -AE/L c s 0 0 

   0 c -AE/L AE/L 0 0 c s 
   0 s 
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Simplifying the above equation, we get, 

c2 cs -c2 -cs 
cs s2 -cs -s2 

    [kg]  = -c2 -cs  c2 cs       (AE/L) 
-cs -s2 cs s2 

This is the global stiffness matrix of a truss element. This matrix has several noteworthy 
characteristics: 

The matrix is symmetric
Since there are 4 unknown deflections (DOF), the matrix size is a 4 x 4.
The matrix represents the stiffness of a single element.
The terms c and s represent the sine and cosine values of the orientation of
element with the horizontal plane, rotated in a counter clockwise direction
(positive  direction).

The following example will illustrate its application. 

(1) 
1 260  AL 

Examples  3 

For the truss structure shown: 150    AL (3) 
(2) ST 

1. Find displacements of joints 2 and 3 300  0.4 kN 
2. Find stress, strain, & internal forces

in each member. 2 

AAL = 200 mm2 , AST = 100 mm2  

All other dimensions are in mm. 

Solution 

Let the following node pairs form the elements: 

Element Node Pair 
 (1) 1-3 
 (2) 1-2 
 (3) 2-3 

Using Shigley’s Machine Design book for yield strength values, we have, 
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Sy (AL) =  0.0375kN/mm2  (375 Mpa)         

Sy  (ST) = 0.0586kN/mm2  (586 Mpa)          

E (AL) = 69kN/mm2 , E (ST) = 207kN/mm2 

A(1) = A(2) = 200mm2 , A(3) =100mm2 

Find the stiffness matrix for each element   
      u2 u6 

Element (1) 
(1)

L(1 ) = 260 mm,      u1  u5 
E(1) = 69kN/mm2, 1 260 mm     3 
A(1) = 200mm2 

θ = 0 
c = cosθ = 1,  c2 = 1 
s = sinθ = 0,   s2 = 0 
cs = 0 

2 2

2 2

2 2
(1)

2 2

2 2

(1)

169 / 200 53.1 /
260

[ ]

1 1 0 1 0
2 0 1 0 0

[ ] (53.1)
5 1 0 1 0
6 0 0 0 0

g

g

EA kN mm mm kN mm
L mm

c cs c cs
cs s cs s AEK

Lc cs c cs
cs s cs s

kNK
mm

= × × =

 − −
 − − =
 − −
 
− −  

− 
 
 =
− 
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u2 
Element 2 

θ = 900 
c = cos 900 = 0,  c2 = 0 1 u1

s = sin 900 = cos 00 = 1,  s2 = 1 

cs = 0 (2) 

EA/L = 69 x 200 x (1/150) = 92 kN/mm 

2 u3 
3 4 1   2 

      u4 
0 0 0 0       3 
0 1 0      -1       4    

      [kg](2)  =     (92) 0 0 0 0       1 
0 -1 0 1        2 

Element 3 u6

θ = 300

c = cos 300 = 0.866,  c2 = 0.75 
3 u5

s = cos 600 = .5,  s2 = 0.25 

cs = 0.433 u4 (3) 
300 mm 

EA/L = 207 x 100 x (1/300) = 69 kN/mm 

θ = 300     
2     u3 

3 4     5    6 

3  .75 .433 -.75 -.433 
      4    -.433 .25 -.433 -.25       (69)  

[kg](3) =     5 -.75 -.433 .75 .433 
      6 -.433 -.25 .433 .25 
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Assembling the stiffness matrices 

Since there are 6 deflections (or DOF), u1 through u6, the matrix is 6 x  6. Now, we will 
place the individual matrix element from the element stiffness matrices into the global 
matrix according to their position of row and column members. 

Element [1] 

1    2 3 4 5 6 

1 5 3 . 1 5 3 . 1
2
3
4
5 5 3 . 1 5 3 . 1
6

− 
 
 
 
 
 
 −
 
  

The blank spaces in the matrix have a zero value. 

Element [2] 

  1 2 3 4 5 6 

 1 
2 92    -92 
3 
4 -92  92
5 
6 
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Element [3] 

1 2 3 4 5 6 
    1 

 2 
    3 51.7 29.9 -51.7 -29.9 
    4 29.9 17.2 -29.9 -17.2 
    5 -51.7 -29.9 51.7 29.9 

 6 -29.9 -17.2 29.9 17.2 

Assembling all the terms for elements [1] , [2] and [3], we get the complete matrix 
equation of the structure. 





























−

=





















































−−
−−−

−−−
−−

−
−

)(4.0
)(0
)(0
)(0
)(0
)(0

2.179.292.179.2900
9.298.1049.297.5101.53
2.179.292.1099.29920
9.297.519.297.5100

00920920
01.530001.53

6
5
4
3
2
1

6

5

4

3

2

1

6

5

4

3

2

1

F
F
F
F
F
F

u
u
u
u
u
u

Boundary conditions 
x and y directions, where as, node 2 is fixed in x-direction only 

1= u2 = u3 = 0.  

herefore, all the columns and rows containing these elements should be set to zero. The 

Node 1 is fixed in both 
and free to move in the y-direction. Thus, 

u

T
reduced matrix is: 










−

=

















−
−

4.0
0

2.179.292.17
9.298.1049.29

6

5

4

u
u

 −− 02.179.292.109 u
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riting the matrix equation into algebraic linear equations, we get, 

 29.9u4    - 29.9u5  - 17.2u6 =  0 

4 

lving, we get   u4 = -0.0043 

ress, Strain and deflections 

lement (1) 

ote that u1, u2, u3, etc. are not coordinates, they 

lement (2) 

W

 -29.9u4 + 104u5  + 29.9u6 =  0  
 -17.2u4 + 29.9u5 + 17.2u6 =  -0.

so
   u5 = 0.0131 
   u6 = -0.0502 

S

E

N
 are actual displacements. 

5

5

5
2

0.0131 5.02 10
260

69 5.02 10 0.00347

, 0.00347 200 0.693

L mm
L mm

kNE
mm

Reaction R A kN

σ

σ

−

−

∆
∈= = = ×

= ∈= × × =

= = × =

0.0131L u∆ = =

E

4

5

5
2

3

0.0043 2.87 10
150

69 2.87 10 1.9803

(1.9803 10 )(200) 0.396

L
L

kNE
mm

R A k

σ

σ

−

−

−

∆
∈= = = ×

= ∈= × × =

= = × =

0.0043L u

N

∆ = =

lement (3) 
t (3) is at an angle 300, the change in the length is found by adding the 

E
Since elemen
displacement components of nodes 2 and 3 along the element (at 300). Thus, 
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0 0 0
5 6 4

0 0

5

5
2

cos30 sin 30 cos30

0.0131cos30 0.0502sin 30 0.0043cos30
0.0116 ( )

0.0116 3.87 10
300

207 3.87 10 0.0080

, 0.0080 100 0.800

L u u u
L

element is compressed
L

L
kNE

mm
Axial force R A kN

σ

σ

−

−

∆ = + −

∆ = − +
= −

∆ −
∈= = = − ×

= ∈= ×− × = −

= = − × = −

0

Factor of Safety 
Factor of safety ‘n’ is the ratio of yield strength to the actual stress found in the part.  

0.0375(1) 10.8
0.00347
0.0375(2) 18.9

0.00198
0.0586(3) 7.325
0.0080

y

y

y

S
Element n

S
Element n

S
Element n

σ

σ

σ

= = =

= = =

= = =

The lowest factor of safety is found in element (3), and therefore, the steel bar is the most 
likely to fail before the aluminum bar does. 

Final Notes 
- The example presented gives an insight into how the element analysis works. The 

example problem is too simple to need a computer based solution; however, it 
gives the insight into the actual FEA procedure. In a commercial FEA package, 
solution of a typical problem generates a very large stiffness matrix, which will 
require a computer assisted solution.  

- In an FEA software, the node and element numbers will have variable subscripts 
so that they will be compatible with a computer-solution  

- Direct or equilibrium method is the earliest FEA method. 

A Handbook on Computer Aided Design   3-15 



FEA 
Chapter 3 Truss Element 

y 

Example 2 1 (1) 2 
4000 lb

Given: 20” 
Elements 1 and 2: Aluminum 50” 
Element 3: steel (3) 
A(1) = 1.5in2 (2)
A(2) = 1.0in2 40” 
A(3) = 1.0in2 

3 4     x
Required:
Find stresses and displacements using hand calculations. 30” 

Solution 

Calculate the stiffness constants: 

in
lb

L
AEK

in
lb

L
AEK

in
lb

L
AEK

5
6

3

5
6

2

5
6

1

100.6
50

101030

105.2
40

10101

105.7
20

10105.1

×=
××

==

×=
××

==

×=
××

==

Calculate the Element matrix equations. 

Element (1) u2 u4
(1) 

u1 u3
   1 2 

Denoting the Spring constant for element (1) by k1, and the stiffness matrix by K(1), the 
stiffness matrix in global coordinates is given as, 
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  1  2    3    4 

2 2 1 

[Kg](1) =  K1

For element (1), θ = 00, therefore 

 =1, c2 = 1 

= 0, s2 =0, and cs = 0 

1  2 3 4 

1 

[k(1)] =  k1

u4

lement (2)      2 u3

or this element, θ = 900, Therefore, 
(2) 

= cosθ = 0,  c2 = 0 θ = 900 
3 u

he stiffness matrix is, u6

5  6 3 4 

2 2 5 

[kg](2) =  k2

c  cs -c  -cs 

 
cs s2 -cs -s2 2 
c2 -cs c2 cs 3 
-cs -s2 cs s2 4 

1 0 -1 0 

 

c

s 

0 0 0 0 2 
1 0 1 0 3 
0 0 0 0 4 

E

F

c
s = sinθ = 1, s2 = 1 5 

c  cs -c  -cs 

 

cs= 0 

T

cs s2 -cs -s2 6 
c2 -cs c2 cs 3 
-cs -s2 cs s2 4 
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5 6 3 4 

5 

[kg](2) =  k2

lement 3   u4

2    u3

= cos(126.90) = -0.6, c2 = .36

= sin(126.90, s2 = .64 
7 

u8

7 

[kg](3) =  k3

0 0 0 0 

 
0 1 0 -1 6 
0 0 0 0 3 
0 -1 0 1 4 

E

For element (3), θ = 126.90. 

c (3)

 4 

θ = 126.90 
s 

u
cs = -0.48 

7  8 3 4 

.36 -.48 -.36 .48 

 
-.48 .64 .48 -.64 8 
-.36 .48 .36 -.48 3 
.48 -.64 -.48 .64 4 

ssembling the global Matrix 
mbly described earlier, the assembled matrix is,  

[Kg]  =  

A
Following the procedure for asse

1 1

1 1 3 3 3

3 2 3 2 3

2 2

3 3 3

3 3 3

0 0 0 0 01
0 0 0 0 0 0 0 02

0 .36 .48 0 0 .36 .483
0 0 .48 .64 0 .48 .644
0 0 0 0 0 0 0 05
0 0 0 0 0 06
0 0 .36 .48 0 0 .36 .487
0 0 .48 .64 0 0 .48 .648

K K

K K K K K K
K K K K K K

K K
K K K

K K K

− 
 
 
 − + − −
 + − − 
 
 

− 
 − −
 

− −  

3

3

3

3

0

K
K
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The boundary conditions are: 

1 = u2 = u5 = u6 = u7 = u8 = 0 

e will suppress the corresponding rows and columns. The reduced matrix is a 2 x2, 

u

W
given below, 

1 3 3

3 2 3

1 3 3 3

3 2 3 4

.36 .483
[ ]

0.48 .644

The final equation is

.36 .48 4000
0.48 .64 8000

g

K K K
K

K K K

K K K u
K K K u

+ − 
=  − + 

+ − −     
=    − +    

ubstituting values for k1, k2, and  k3, we get S

35

4

3

4

5
1

1
1

5
2

2
2

5
3

3
31

9.66 2.88 4000
10

2.88 6.34 8000

0.0000438
0.012414

(7.5 10 )( 0.0000438) 214
1.5

(2.5 10 )( 0.012414) 3015
1.0

(6 10 )( 0.0000

u
u

u in
u in

P K u psi
A A
P K u psi
A A

K uP
A A

σ

σ

σ

− −    
=    −    

= −
= −

∆ × −
= = = = −

∆ × −
= = = =

∆ × −
= = =

0 0438cos53.1 .012414sin 53.1 ) 6119
1.0

psi+
=
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CHAPTER 4

Beam Element 

4.1 Introduction 

Beam element is a very versatile line-element, it has six degrees of freedom at each node, 
which include, translations and rotations along the x, y, and z directions, respectively. 
Figure 4.1 shows the positive directions of these displacements. 

y 
vjy 

θjy        vjx 
i x

θjz            j  θjx 

 z vjz  

  Figure 4.1 Beam Element with six degrees of freedom at each node 

Beam element is employed to simulate a slender structure that has an uniform cross 
section. The element is unsuitable for structures that have complex geometry, holes, and 
points of stress concentration. 

The stiffness constant of a beam element is derived by combining the stiffness constants 
of a beam under pure bending, a truss element, and a torsion bar. Thus, a beam element 
can represent a beam in bending, a truss element, and a torsion bar. In FEA it’s a 
common practice to use beam elements to represent all or any of these three loads. 

We will derive the element stiffness equation for a beam element by first deriving the 
stiffness equation of a beam in bending, and then superimposing the stiffness of a truss 
and a torsion bar element. 
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4.1 Derivation of a Stiffness Equation for a Beam Element 
Under Pure Bending 

A beam, such as, a cantilever beam, under pure bending (without axial loads or torsional 
loads), has two-degrees of freedom at any point, transverse deflection v and rotation θ, as 
shown in Figure 4.2. 

           F 

    θ     v 

Figure 4.2 Cantilever Beam with it’s DOF, v and θ 

A beam element has a total of four degrees of freedom, two at each node. Since there are 
four degrees of freedom, the size of the stiffness matrix of a beam element has the size 4 
x 4. 

We will derive the stiffness matrix equation using a simple method, known as Stiffness 
Influence Coefficient Method. In this procedure, a relationship between force and the 
coefficients that influence stiffness is established. For a beam element, these coefficient 
consist of: the modulus of elasticity, moment of inertia, and length of the element. For a 
two-node beam element, there are two deflections and two rotations, namely, v1, θ1, v2, 
and θ2. Force and influence coefficient relationship is established by setting each of the 
four deflection values to unity, with the remaining deflection values equal to zero. The 
procedure follows. 

Consider a beam element, loaded in such a way that it has the deflection values: vi = 1,  θi 
= 0, vj = 0,  θj = 0 

  i  j 
vi, θi vj, θj 

             Figure 4.3 Beam Element  

The above deflections can be produced by a combination of load conditions, shown in 
figure 4.4. 
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The following deflection relationships for loading of Figures 4.4 (a) and (b) can be found 
in any Machine Design Handbook, and is given as, 

 vmax 

vmax =  (FL3)/(3EI) 
y 

      θ             θ  =  - (FL2)/(2EI) 
 i L j x 

F 
(a)

y 
       Mi  

L Mj  vmax = - (ML2)/(2EI) 
 i j 
 vmax x      θ    = (ML)/(EI) 

(b) 

 Figure 4.4 

Applying these relationships to the beam of Figure 4.3, we get, 

1 = vi = (vi)F + (vi)M  

1 = vi = (Fi L3)/3 EI  - (Mi L2)/2EI (4.1) 

and θ = 0 = (θ)F  + (θ)M 

0 = - (Fi L2)/2EI  + (Mi L)/EI (4.2) 

Solving Equations (4.1) and (4.2), we get, 

Fi = (12EI)/L3 (A) 

Fj = - Fi = -(12EI)/L3 (B) 

Mi = (6EI)/L2 (C) 

From Figure 4. 4 (a) and (b), 
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 Mj  =  Fi L - Mi   
      = (12EI)/L2 = (6EI)/ L2  
      =    (6EI)/ L2 (D) 

Writing equations (A) through (D) in a matrix form we get, 

Fi (12EI)/L3   1 (12EI)/ L3 0 0 0   1 

Mi (6EI)/ L2 1 (6EI)/ L2   0 0 0   0 
= =

Fj -(12EI)/ L3 1 -(12EI)/ L3 0 0 0   0 

Mj (6EI)/ L2 1 (6EI)/ L2  0 0 0   0 

Using a similar procedure and setting the following deflection values: 

 vi = 0,  θi = 1, vj = 0,  θj = 0, we get,  

Fi (6EI)/L2 1  0 (6EI)/ L2 0 0 0 

Mi (4EI)/ L  1 0 (4EI)/ L 0 0 1 
=       =   (4.6) 

Fj -(6EI)/ L2 1 0 -(6EI)/ L2 0 0 0 

Mj (2EI)/ L         1                0 (2EI)/ L 0 0 0 

Similarly, setting vj = 1 and ,  θj = 1, respectively, and keeping all other deflection values 
to zero, we get the final matrix as,  

Fi (12EI)/L3 (6EI)/ L2 -(12EI)/ L3 (6EI)/ L2 1 

Mi (6EI)/ L2 (4EI)/ L  -(6EI)/ L2 (2EI)/ L 1 
=   (4.7) 

Fj -(12EI)/ L3 -(6EI)/ L2 (12EI)/L3  -(6EI)/ L2 1 

Mj (6EI)/ L2 (2EI)/ L -(6EI)/ L2 (4EI)/ L 1
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Note that, the first term on the RHS of the above equation is the stiffness matrix and the 
second term is the deflection. In the case where deflections are other than unity, the 
above equation will provide an element equation for a beam (in bending), which can be 
written as, 

Fi (12EI)/L3 (6EI)/ L2 -(12EI)/ L3 (6EI)/ L2 vi

Mi (6EI)/ L2 (4EI)/ L  -(6EI)/ L2 (2EI)/ L θi 
=      (4.7) 

Fj -(12EI)/ L3 -(6EI)/ L2 (12EI)/L3  -(6EI)/ L2 vj 

Mj (6EI)/ L2 (2EI)/ L -(6EI)/ L2 (4EI)/ L θj

Where Fi, Mi, Fj, Mj are the loads corresponding to the deflections vi, θi, vj, θj. 

Equation (4.7) is the equation of a beam element, which is under pure bending load (no 
axial or torsion loads). The stiffness matrix is a 4 x 4, symmetric matrix. Using this 
equation, we can solve problems in which several beam elements are connected in an uni-
axial direction. The assembly procedure is identical to the truss elements. However, if the 
beam elements are oriented in more than one direction, we will have to first transform the 
above equation (4.7) in to a global stiffness matrix equation (analogues to the procedure 
used for truss elements).  

For a beam element, transformation of a local stiffness matrix into a global equation 
involves very complex trigonometric relations, and therefore, we will defer the 
derivations at this time. However, Equation (4.7) can be used for solving a beam 
problem, loaded under bending loads. In order to understand the application of this 
equation, we will apply it to solve some statically indeterminate problems. 
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Example 1 

For the beam shown, determine the displacements and slopes at the nodes, forces in each 
element, and reactions at the supports. 

5 ft 5 ft 100 lb 
E = 1.4 x 106 psi, I = 2.4 in4 

      K = 200 lb/in 

Solution 

The beam structure is descritized into three elements and 4-nodes, as shown. 

   [1]    [2] 
           3 

     1        2 

[3] 

4 

First, we will find the element stiffness matrix for each element, next we will assemble 
the stiffness matrices, apply the boundary conditions, and finally, solve for node 
deflection. Internal forces and reactions are calculated by back-substituting the 
deflections in the structural equation. 

   [1] 
Element 1 

1 2

EI/L3 =  (1.4 x 106) x (2.4)/(5x12)3 = 15.55 

The general equation of a stiffness matrix is given as, 
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12 6L -12 6L      v1 

6L 4L2 -6L 2 L2 θ1
[Ke](1) =  (EI/L3)  

-12 -6L 12 -6L     v2 

6L 2 L2 -6L 4 L2 θ2

[2] 
Element 2 2 3 

12 6L -12 6L      v2 

6L 4L2 -6L 2 L2 θ2
[Ke](1) =  (EI/L3)  

-12 -6L 12 -6L     v3 

6L 2 L2 -6L 4 L2 θ3

3 
Element 3 

[3] 

4 

[Ke](3)  = K -K v3
-K K    v4
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To get the global stiffness matrix, we will use the same procedure used for assembling 
truss element stiffness equations. In terms of E, L, and I the assembled global stiffness 
matrix is, 

v1 θ1 v2 θ2 v3       θ3   v4 

  v1 12 6L -12 6L      0      0 0 

θ1  4L2 -6L 2 L2      0       0        0 

v2 24 0 -12    6L  0 
x (EI) /(L3) 

θ2 8L2       -6L         2L2     0 

v3 12 +K’       -6L    - K’ 

θ3  4L2       0 

v4 SYMMETRY K’ 

Where K’ = (K) x [L3 / (EI)] 

Our next step is to write the structural equation; however, we can reduce the size of the 
stiffness matrix by applying the given boundary conditions: 

v1 =  θ1 = 0  node 1 is fixed 

v2 =  0 node 2 has no vertical deflection, but it’s free to rotate. 

V4 =  0 node 4 is fixed. 

The reduced stiffness matrix is 

 8L2 -6L 2L2

  KG    =    EI / (L3) -6L 12+K’ -6L 
  2L2 -6L 4L2

Substituting the values of E, L, and I the structural equation can be written as, 
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             0      1152   -72 288    θ2
          -100      =    (15.55)      -72   16.11 -72    v3

              0      288    -72 576    θ3

θ2 = - 0.0032 rad 
Solving, we get v3 = -  0.4412 in 

θ3 = -0.0095 rad 
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4.3 Arbitrarily Oriented 2-D Beam Element 
The stiffness equation for an arbitrarily oriented beam element can be derived with a 

procedure similar to the truss element. 

y d2y 
x 

 y 
ϕ2

d1y d1y 

ϕ1 d1x x

d1y = d1y cosθ - d1x sinθ =  d1y c - d1x s 

d2y = d1y cosθ – d2x sinθ =  d2y c – d2x s 

and  ϕ1 = ϕ1,  ϕ2 = ϕ2

Note: The underscored terms represent local coordinate values. Thus, x and y are local 
coordinates and x and y are global coordinates.  

The above equations can be written in a matrix form, 

d1x 
d1y -s c 0 0 0 0 d1y 
ϕ1 =   0  0 1 0 0 0 ϕ1 
d2y  0 0  0 -s c 0 d2x  
ϕ2 0  0 0 0 0 1 d2y 

ϕ2

-s c 0 0 0 0
Let   T =   0  0 1 0 0 0

 0 0  0 -s c 0
0  0 0 0 0 1     , the transformation matrix. 

Thus,  {d}  =  [T]  {d} 
Global

Local 

Note that angle ϕ is independent of the coordinate systems, and  ϕ1 = ϕ1,  ϕ2  = ϕ2  
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As derived in the case of the truss element, relationship between local and global stiffness 
matrices is given as 

 [kg] = [T] [k] [T] 

Where, [kg] = Global stiffness matrix of an element 
[T] = Transformation matrix 

 [k] = Local stiffness matrix of the element 

Substituting the values of [T] and [k], we get the global equation of a beam element 
oriented arbitrarily at an angle θ  as, 

12S2 -12SC -6LS -12S2 -12SC -6LS 
12C2 6LC 12SC -12C2 6LC 

k = EI/L 4L2 6LS -6LC 2L2 
 12S2 -12SC 6LS 

Symmetry  12C2 4L2  

This is the equation of a beam element (without axial or torsional load, and oriented at an 
angle θ . 

Also, S = sinθ , C = cosθ  in the above equation. 

4.4 Beam Element with Combined Bending and Axial loads 

First, we will derive the stiffness matrix in local coordinates and then convert it in to 
global coordinates.  

4.4.1 Stiffness matrix of a beam element with bending and axial loads 
in  local coordinates 

The stiffness equation for the combined bending and axial load can be written by 
superimposing the axial stiffness terms over the bending stiffness. 

For axial loading, the structural equation is, 

   f1x 1 -1 d1x
=     AE/L3

   f2x  -1 1 d2x 
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And for bending loading, the structural equation is, 

f1y 12 6L -12 6L      d1y  

m1 6L 4L2 -6L 2L2 φ1
=   AE/L3  

f2y  -12 -6L 12 -6L     d2y 

m2 6L 2L2 -6L 4L2 φ2 

Therefore, the combined loading equation is 

f1x  C1 0 0 - C1 0 0    d1x 

f1y  0 12 C2 6C2L 0 -12 C2 6C2L   d1y 

m1  0 6 C2L 4C2L2 0 -6C2L 2C2L2 φ1 
= 

f2x -C1 0 0 C1 0 0 d2x 

f2y 0 -12 C2 -6C2L 0 12 C2 -6C2L d2y 

m2 0 6 C2L 2C2L2 0 -6C2L 4C2L2 φ2 

And,[
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Where, C1 = AE/L, and C1 = EI/L3
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4.4.2 Transformation matrix for combined Bending and Axial loading. 

For the axial loading, the relationship between the local and global coordinates was 
derived earlier, as 

SdCdd

SdCd
ddd

yxx

yx

yxx

222

^

11

111

^
sincos

+=

+=

+= θθ

Also, for bending load, derived previously, 
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Therefore, the relationship for the combined bending and axial loading can be written as 
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Where,  
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4.4.3 2-D Beam Element Equation for Combined Loading – Axial 
and Bending – at an Arbitrary Orientation θ 

Substituting the values of  and [T] into the equation [ ] , we get 
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4.5 2-D Beam Element with combined loading Bending, Axial, 
and Torsion (θ = 0) 

The torsional loads are m1x and m2x, and the corresponding deflections are, 
x1φ  and x2φ

The torsional structural equation is: 

 m1x   1 -1 φ1x 
= JG/L

 m1x   -1 1 φ2x 

A Handbook on Computer Aided Design   4-14 



FEA 
Chapter 4 Beam Element 

These terms can be superimposed on the stiffness equation derived previously for the 
combined bending and axial loads. 

   dy 

φy 
3-D Beam Element: dx

φz φx 
        dz 

A 3-D beam element has 6 DOF at each node, and 12 DOF for each element. The 
stiffness matrix can be derived by super-imposing the axial, bending, and torsion loadings 
in the XY, XZ, and YZ planes. The equation is, 
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APPENDIX A 

Matrices 

Introduction 

• FEA solves structural problems by defining its behavior in terms of differential
equations. These equations are converted into a set of linear algebraic equations,
which are represented in the form of matrix equations.

• Matrix equations are easy to solve with computers, and therefore it’s important to
understand the matrix algebra.

• We must always remember that when we solve matrix equations, we are, in fact,
solving the simultaneous algebraic equations (and the differential equations) of the
structure.

• Since all the FEA calculations are based on matrix algebra, it’s important to
understand the matrix operations: addition, subtraction, multiplication, inversion,
transpose, etc.

Relationship between Algebraic and Matrix equations 

a11x11 + a12x2 + a13x3 = b1
a21x11 + a22x2 + a23x3 = b2 (A) 
a31x11 + a32x2 + a33x3 = b3

a11   a12  a13            x1         b1 
a21   a22  a23 x2 =    b2      or   [A] {x} = {b}      (B) 
a31   a32  a33       x3         b3 

• Equations (A) & (B) represents the same system of equations.

Transpose Matrix  

        3  8 
Let  [A] =    5  2        then 

 6   3 

  [A]T  =    3  5  6             The rows & column position of elements is interchanged. 
   8  2  3 

1



Also, [AB]T = [B]T [A]T  

Orthogonal Matrix 

Orthogonal matrix is a square matrix. For an orthogonal matrix, the inverse of the matrix 
is equal to it’s transpose, thus, 

 [A]-1 = [A]T 

Also    [A][A]-1 = [I] 

            [AT][A] = [I] 

[A][AT] = [I]    Thus, 

a11  a12  a13      a11  a21  a31 
a21  a22  a23      a12  a22  a32       =    [I] 
a31  a32  a33      a13  a23  a33 

Matrix partitioning 

Matrix partitioning is the sub division of a matrix into several smaller matrices, called 
submatrices. 
• In FEA, a matrix is usually partitioned into two or four submatrices.
• A matrix is partitioned so that the number of columns to the left of the vertical

partition in the coefficient matrix equals the number of rows above the horizontal
partition.

• The submatrices can be manipulated with matrix operations in the same manner as
the original matrix.

EX: 
            a11  a12   a13     x1             b1 
 a21  a22   a23     x2     =      b2 
 a31  a32   a33     x3             b3  

 A11  A12        X1      =      B1 
 A21  A22            X2              B2

           [A11] {X1}+ [A12] {X2} = [B1] 
           [A21] {X1} + [A22] {X2}= [B2] 

2



• The advantage of partitioning a matrix is that the resulting sub matrices can be
manipulated with matrix operations in the same way as the original.

• The ability to deal with a system of equations, either as one matrix equation or two
matrix equations provides a convenient means for solving an equation system when
some of the unknowns are in the force vector [B] and the remainder are in the
displacement vector X.

• This is frequently the case when applying the FEA method to structures, where the
number of algebraic equations is very large and contains unknown forces.

Inverse Matrix 

 [A] [A-1] = [I] 
 [A-1] is the inverse of matrix [A]. 

The equation [A][X] = [B] is solved by pre-multiplying the L.H.S with A-1, thus  

 [A-1][A][X] = [A-1][B] 
or [X] = [A-1][B] 

* [A] must be a square matrix. Non-square matrix cannot be inverted.

Orthogonal Matrix 

If A-1 = AT, the matrix [A] is called an orthogonal matrix. 

Determinants  

The determinant of a square matrix is a single number, a scalar quantity. Its symbol is 

det[A] or   A 

Example: 

          det[A] =   a11  a12           =   (a11)(a22)-(a12)(a21) 
   a21  a22 

Sub-matrix solution procedure: 
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• In FEA, generally, some of the displacements and   most of the forces are known and
the structural matrix equation is best solved by partitioning it.

• The rows and columns of the stiffness matrix are arranged so that the known forces
and known displacements are placed in submatrices.

Example: 

            K11  K12  K13  K14  K15       q1            f01 
K21  K22  K23  K24  K25       q02           f2 

 K31  K32  K33  K34  K35       q3      =    f03 
 K41  K42  K43  K44  K45       q04           f4 
 K51  K52  K53  K54  K55       q5            f05

• The displacements and the forces with subscript ‘0’ are known. [q02, q04 & f01, f03, f05]

• Before partitioning, the rows of matrix K are rearranged so that the known forces are
grouped in the first three rows, as shown below.

             K11  K12  K13  K14  K15      q1           f01 
 K31  K32  K33  K34  K35      q02          f03 
 K51  K52  K53  K54  K55      q3      =   f05 
 K21  K22  K23  K24  K25      q04          f2 
 K41  K42  K43  K44  K45      q5           f4

Next, the columns of the K matrix are rearranged so that the unknown displacements are 
grouped on the top. 

• Note that, the validity of the algebraic equations represented by the matrix equations
is maintained only if the change in position of q values is compensated by swapping
the corresponding columns in the K matrix.

• We will change the order of displacements to:

      q1            
   q3 

      q5 
      q02 
      q04

Therefore, we must swap the columns in K matrix as: 
Column 1: unchanged 
Column 2: Replace by column 3 
Column 3: Replace by column 5 
Column 4: Replace by column 2 
Column 5: Replace by column 4 

4



The final matrix eqn. is 

             K11  K13  K15  K12  K14      q1           f01 
 K31  K33  K35  K32  K34      q3           f03 
 K51  K53  K55  K52  K54      q5     =    f05 
 K21  K23  K25  K22  K24     q02           f2 
 K41  K43  K45  K42  K44      q04          f4

Now we can partition the matrix as shown. The submatrices can be written as 

        Kff    Kfs       qf           Fo 
        Ksf    Kss      qo    =     Fs 

 [Kff] {qf} + [Kfs]  {qo} = Fo (1) 
[Ksf] {qf} + [Kss]  {qo} = Fs   (2) 

The equations can be solved for qf & Fs as 

{qf} = [Kff
-1] ({Fo} – [Kfs] {qo}) 

{Fs} = [Ksf]{qf} + [Kss]{qo} 
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