

 - R.B. Agarwal

Handbook on Computer Aided Design

Handbook on

Computer Aided

Design

- Dr. Raghu B. Agarwal

Edited by: Ajay Yadiki

This page intentionally left blank

Contents

Note to readers ix

Introductory Chapters

1. Introduction to Computer Aided Design 1

1.1 Introduction 1-1

1.2 Computer Aided Manufacturing (CAM) 1-3

1.3 Concurrent Engineering 1-4

1.4 CAD/CAM History 1-5

1.5 CAD Hardware 1-6

1.6 CAD Software 1-8

1.7 CAD Platform 1-9

1.8 CAD Evaluation Criteria 1-10

1.9 Mechanical Engineering Applications of CAD 1-12

2. Two Dimensional Transformation 2

2.1 Introduction 2-1

2.2 2D Transformation 2-2

2.3 Basic Modelling Transformations 2-3

2.4 Scaling 2-4

2.5 Homogeneous Coordinates 2-5

2.6 Translation Transformation 2-7

2.7 Rotation 2-9

2.8 Combined Transformation 2-14

2.9 Mirroring 2-19

3. Three Dimensional Transformation 3

3.1 Introduction 3-1

3.2 Rotational Transformation 3-2

3.3 Rotation of an object about an Arbitrary Axis 3-6

4. Curves 4

4.1 Introduction 4-1

4.2 Role of Curves in Geometric Modelling 4-3

4.3 Parametric and Non-parametric Equations of a Curve 4-4

4.4 Fixed-Form or Analytical Curves 4-5

4.5 Interpolated Curves 4-10

4.6 Approximated Synthetic Curves 4-16

5. Surfaces 5

5.1 Introduction 5-1

5.2 Types of Surfaces 5-2

5.3 Interpolated Surfaces – Bilinear Surface 5-5

5.4 Interpolated Surfaces – Coons Patch 5-6

5.5 Linearly Swept Surfaces 5-7

5.6 Revolved Surfaces (Circular Sweep) 5-10

5.7 Circular Sweep of a Synthetic Curve 5-13

5.8 Creating a Surface by Parametric Sweeping 5-15

5.9 Creating a Surface by sweeping a polygon 5-16

5.10 Creating a Parametric Cubic Patch 5-17

5.11 Bezier Surfaces 5-21

6. Solid Modelling 6

6.1 Applications of Solid Modelling 6-1

6.2 Solid Model Representation 6-2

6.3 Solid Model Creation Scheme 6-3

6.4 Commercial Modellers 6-6

Finite Elemental Analysis

1. An Overview of the Finite Element Analysis 1

1.1 Introduction 1-1

1.2 History of FEA 1-2

1.3 How FEA works – Within software 1-3

1.4 How FEA works – User’s interaction 1-4

1.5 Convergence – Assuring Optimum Mesh Size 1-4

1.6 H- versus P- elements 1-6

1.7 Bottom-up and Top-down approach 1-5

1.8 Discretization or Division of a structure into small elements 1-5

1.9 Element types 1-6

2. The Basic FEA Procedure 2

2.1 Introduction 2-1

2.2 Overview 2-1

2.3 Understanding Computer and FEA software interaction 2-2

3. Truss element 3

3.1 Introduction 3-1

3.2 Structures & Elements 3-2

3.3 Truss Element 3-3

4. 4

4-1

4-2

4-10

Beam element

4.1 Introduction

4.2 Derivation of a Stiffness Equation for a Beam Element

4.3 Arbitrarily Oriented 2-D Beam Element

4.4 Beam Element with Combined Bending and Axial loads

4.5 2-D Beam Element with combined loading Bending
4-11

4-13

Appendix 11

This page intentionally left blank

Note to readers
This book is dedicated to work of DR. Raghu B. Agarwal. The contents of the book

are available over internet by name “lecture notes by R.B. Agarwal on Computer

Aided Designing for Mechanical Engineering”. The editor tried to collect all the

available resources to make this a single book. The lecture notes was good but it was

not a complete book but a collection of files in a scattered form. The editor collected

all the information and made this book “Handbook on Computer Aided Design –

R.B. Agarwal”. In this way this book could easily reach students who want to learn

fundamentals of Computer Aided Designing for free. This book is not copyrighted

but the contents in the book are copyright protected.

About CAD:

Computer Aided Designing is a major study for engineers from different disciplines,

it is widely used and adopted by many industries and companies and marketed their

software and hardware globally. The fundamentals of Computer Aided Designing

stands still and are very simple to understand the basics. This is the key subject to be

studied by a design engineer irrespective of his field of work. Computer Aided

Designing is used in many sectors like Automation & Industries, Digital

Manufacturing, Digital Design of Electronic Circuits, Architecture & Structural

Engineering, Electrical Systems & Wiring, Automotive and Vehicles, Consumer

Products, Space etc.

Due to its wide area of applications, this subject is made mandatory in many colleges

and universities worldwide but still there exists no book as simple as this book that

deals with fundamentals concepts involved in CAD.

About Author:

DR. Raghu B. Agarwal

Professor & Graduate Program Advisor

Department of Mechanical Engineering

San Jose State University

One Washington Square

San Jose, California 95192

Email: raghu.agarwal@sjsu.edu

(Please mail in official hours only)

mailto:raghu.agarwal@sjsu.edu

This page intentionally left blank

Chapter1 Introduction

CHAPTER 1

INTRODUCTION

1.1 Introduction

In general, a Computer Aided Design (CAD) package has three components: a) Design,
b) Analysis, and c) Visualization, as shown in the sketch. A brief description of these
components follows.

a) Design: Design refers to geometric, i.e., 2-D and 3-D, including, drafting, part
creation, creation of drawings with various views of the part, assemblies of the parts,
etc.

b) Analysis: Analysis refers to finite element analysis, optimization, and other number
crunching engineering analyses. In general, a geometric model is first created and
then the model is analyzed for loads, stresses, moment of inertia, and volume, etc.

c) Visualization: Visualization refers to computer graphics, which includes: rendering a
model, creation of pie charts, contour plots, shading a model, sizing, animation, etc.

Design Analysis

Visualization

 Components of Computer Aided Design

Handbook on Computer Aided Design by R. B. Agarwal 1-1

Chapter1 Introduction

Each of these three areas has been extensively developed in the last 30 years. Several
books are written on each of these subjects and courses are available through the
academic institutions and the industry.

Most commercial CAD packages (software) consist of only a single component: design
or analysis or visualization. However, a few of the vendors have developed an integrated
package that includes not only these three areas, but also includes the manufacturing
software (CAM). Due to the large storage requirement, integrated packages use either an
UNIX workstation or a mainframe platform, and not the popular PC platform. With the
improvement in PC computing speed, it’s only a matter of time before we see an
integrated package run on a PC. CAD has revolutionized the modern engineering
practice; small and large companies use it alike, spending several billion dollars for the
initial purchase or lease alone. CAD related jobs are high in demand and the new
graduates have advantage over their senior colleagues, as they are more up to date and
more productive.

 An example of Computer Aided Design is shown below.

Handbook on Computer Aided Design by R. B. Agarwal 1-2

Chapter1 Introduction

1.2 Computer Aided Manufacturing (CAM)

CAM is the next stage of CAD. A part created in CAD can be downloaded and
manufactured, without a human hand touching the part. The process is called CAM, and
involves CAD, Networking, and NC programming, as shown below.

CAD Networking

NC programming
Process planning
Inspection and simulation

 Components of Computer Aided Manufacturing

Handbook on Computer Aided Design by R. B. Agarwal 1-3

Chapter1 Introduction

1.3 Concurrent Engineering

Concurrent Engineering is another powerful CAD concept that has evolved in the 90’s.
According to this concept, there is an instantaneous communication between the
designer, analyst, and manufacturing. Changes made at any of these work centers are
immediately passed on to the others and the product is modified without delay. Often, the
customer, management, and the marketing people join in and become part of the process.
Concurrent engineering saves the valuable time and helps get the product out in the
market quicker. Products that use to take years from the date of its concept to the actual
production now take only a few weeks, and the final product is better and cost-effective.

Some large organizations have invested in Rapid Prototyping process. In this process, the
part is created by a CAD package and downloaded into the rapid prototyping machine;
the machine immediately manufactures the part, using a plastic material. This is a good
example of concurrent engineering, sometimes referred as Art to Part concept.

Handbook on Computer Aided Design by R. B. Agarwal 1-4

Chapter1 Introduction

1.4 CAD/CAM History

The concept of CAD and CAM is relatively new. The usage is linked with the
development of computers. The actual application of CAD/CAM in industry, academia
and government is only approximately 30 years old. Formal courses in CAD and Finite
Element Analysis (FEA) were introduced in 1970’s. The major application thrust of CAD
came in 1980’s, with the availability of PCs and workstations. In its early stage of usage,
very few engineering companies could afford the expense of mainframe computers;
however, PCs and workstations have evolved into affordable and adequate platform to
support comprehensive CAD packages that initially were designed to run on the
mainframe platform. A brief history of the evolution of CAD/CAM, according to the
decade and the major CAD/CAM developments, is outlined below.

1960’s
• Development in Interactive computer graphics research
• Sketchpad system developed by Ivan Sutherland in 1962
• CAD term coined
• First major commercial CAD/CAM software available: CADAM by Lockheed, in 1965
• Bell Telephone’s - Graphics 1 remote display system developed

1970’s
• Application of CAM in government, industry and academia
• National organization formed
• Beginning of usage of computer graphics
• Turnkey system available for drafting
• Wireframe and surface software became available
• Mass property calculation and FEA software became available
• NC tape generating, verification, and integrated circuit software became available

1980’s
• CAD/CAM used for engineering research and development
• New CAD/CAM theories and algorithms developed
• Integration of CAD/CAM
• Solid software became available
• Use of PCs and workstation began

1990’s
• Concept of concurrent engineering developed
• Increased use of CAD/CAM on PCs and worksations
• Improvements in hardware and software

Handbook on Computer Aided Design by R. B. Agarwal 1-5

Chapter1 Introduction

1.5 CAD Hardware
There are basically two types of devices that constitute CAD hardware: a) Input devices,

and b) Output devices. A brief description follows.

1.5.1 Input Devices
These are the devices that we use for communicating with computer, and providing our
input in the form of text and graphics. The text input is mainly provided through
keyboard. For graphic input, there are several devices available and used according to the
work environment. A brief description of these devices is given here.

Mouse: This is a potentiometric device, which contains several variable resistors that
send signals to the computer. The functions of a mouse include locating a point on the
screen, sketching, dragging an object, entering values, accepting a software command,
etc. Joystick and trackballs are analogous to a mouse device, and operate on the same
principle.

Digitizers: Digitizers are used to trace a sketch or other 2-D entities by moving a cursor
over a flat surface (which contains the sketch). The position of the cursor provides a
feedback to the computer connected with the device. There are electrical wires embedded
in orthogonal directions that receive and pass signals between the device and the
computer. The device is basically a free moving puck or pen shaped stylus, connected to
a tablet.

Light Pens: Lockheed’s CADAM software utilized this device to carry out the graphic
input. A light pen looks like a pen and contains a photocell, which emits an electronic
signal. When the pen is pointed at the monitor screen, it senses light, which is converted
to a signal. The signal is sent to the computer, for determination of the exact location of
the pen on the monitor screen.

Touch Sensitive Screens: This device is embedded in the monitor screens, usually, in the
form of an overlay. The screen senses the physical contact of the user. The new
generation of the Laptop computers is a good example of this device.

Other Graphic Input Devices: In addition to the devices described above, some CAD
software will accept input via Image Scanners, which can copy a drawing or schematic
with a camera and light beam assembly and convert it into a pictorial database.

The devices just described are, in general, independent of the CAD package being used.
All commercial CAD software packages contain the device drivers for the most
commonly used input devices. The device drivers facilitate a smooth interaction between
our input, the software, and the computer. An input device is evaluated on the basis of the
following factors:
• Resolution
• Accuracy

Handbook on Computer Aided Design by R. B. Agarwal 1-6

Chapter1 Introduction

• Repeatability
• Linearity

1.5.2 Output Devices
After creating a CAD model, we often need a hard copy, using an output device. Plotters
and printers are used for this purpose. A plotter is often used to produce large size
drawings and assemblies, where as, a laser jet printer is adequate to provide a 3-D view
of a model. Most CAD software require a plotter for producing a shaded or a rendered
view.

Handbook on Computer Aided Design by R. B. Agarwal 1-7

Chapter1 Introduction

1.6 CAD Software

CAD software are written in FORTRAN and C languages. FORTRAN provides the
number crunching, where as, C language provides the visual images. Early CAD
packages were turnkey systems, i.e., the CAD packages were sold as an integrated
software and hardware package, with no flexibility for using second vendor hardware
(1970s and 80s). These systems were based on 16-bit word, and were incapable of
networking. The modern CAD software utilizes the open architecture system, i.e.,
software vendors do not design and manufacture their own hardware. Third party
software can be used to augment the basic CAD package. Most popular CAD package
will facilitate integration of the Finite Element Analysis and other CAD software from
more than one vendor. For example, IDEAS preprocessor can work with almost all the
FEA packages for pre and post analyses.

Networking is an important consideration in applications of CAD software. A model
created by one engineer must be readily accessible to others in an organization, which is
linked by a LAN or other means. The designer, analyst, management, marketing, vendor,
and others generally share a model. This is the concurrent engineering in action,
mentioned earlier.

an example of CAD software is shown below,

Handbook on Computer Aided Design by R. B. Agarwal 1-8

Chapter1 Introduction

1.7 CAD Platform

In general, we can run CAD software on three different CAD platforms: Mainframe,
Workstation, and PC. When the CAD programs first became available, they could only
be run on a mainframe computer. However, as the PCs have become faster and cheaper,
almost all the CAD vendors have introduced a version of their CAD software that will
effectively run on a Pentium or higher computer. Currently, the most popular platforms
are PCs and Workstations. Popularity of Workstations stems from their ability to network
easily with other computers, and also, due to their large memory storage capability.
However, PC platform is still the most preferred medium for most engineers. Increasing
popularity of the PC platform can be attributed to several factors, including, total user
control, the speed, capability of storing large memory, ease of hardware upgrading and
maintenance, and the overall reasonable cost.

 CAD PLATFORMS

MAINFRAME WORKSTATIONS PCs

Large Data storage Medium size data storage Limited data storage
Networked Networked Can be networked
Expensive Relatively inexpensive Inexpensive
Need interface language Runs on Unix Run on MS-Windows
No user control No user control User controlled
Good for Large corporations Good for small companies Good for all users

Handbook on Computer Aided Design by R. B. Agarwal 1-9

Chapter1 Introduction

1.8 CAD Evaluation Criteria

In the current CAD market, ProE and AutoCAD are arguably the most dominating CAD
software. AutoCAD is basically a 2-D program, with some capability to create 3-D
models, where as, ProE is a truly 3-D CAD package. Besides these software, there are
several other CAD software, listed in the previous section (Sec 1.3), that have sales
exceeding $100 millions. No one CAD package is suitable for all the CAD users in the
world. The product we are designing dictates the type of CAD package we need. A good
CAD package includes good software, as well as, a compatible hardware. Following is a
brief description of the general criteria for evaluating a CAD package.

Hardware: Most desirable features in a good hardware are:
• Open architecture
• High speed, large storage
• Compact size
• Inexpensive components
• Inexpensive upgrading

Software: In general, the most comprehensive software are written to satisfy almost all
the modelling needs of a modeler, consequently, the software tend to be very complex
and hard to learn. To create a simple model, we go through several unnecessary steps,
and lack the intuitiveness of a simple, straightforward program. ProE is a good example,
where we have to go through several layers of menus to create a simple solid. On the
other hand, if we were to use a simpler CAD program, the same solid can be created by
only a few simple commands. There are several other factors that we should consider
when evaluating software. Following is a brief description of these factors.

• Operating System: Unix or Windows/NT. PCs in general use Microsoft Windows,
where as, operating system for Workstations is Unix. For a large organization,
Workstations are preferable.

• User Interface: Most popular CAD software have menu driven commands, which is
preferable to the old system of non-menu driven, where user interface was completely
by responding to software commands. The most popular CAD programs work with
menu driven interface, with some input/action required through command prompts.

• Documentation and Support: Learning a software can be very difficult if the
software lacks good documentation. Documentation usually comes in the form of a
user’s manual, a tutorial book, commands manual, and on-line help. The recent trend
is to provide access to the above-mentioned documentation through the Internet, or
provide the manuals on a CD ROM. Some CAD vendors provide additional technical
support help through phone – ProE is a very good example of this type of support.

• Maintenance: Cost of the hardware and software upgrades can significantly impact
the small and medium size companies’ decision to choose one software over the
others. Most CAD vendors go through an upgrade, on the average, every two years.
Usually, hardware upgrade is not as frequent.

Handbook on Computer Aided Design by R. B. Agarwal 1-10

Chapter1 Introduction

• modelling Capabilities: In, general, a CAD software can be classified as either a 2-D
or a 3-D program. If we were basically involved in 2-D drawings, any well
established 2-D software, similar to AutoCAD would suffice our needs. On the other
hand, if we need to create 3-D models and assemblies, we will be better off with a 3-
D molder – ProE, SOLIDWORKS, etc.

• Ease of modelling: As a rule-of-thumb, a general, all-purpose type CAD software is much
more complex and difficult to learn than a special purpose CAD package.

• Interface with other CAD Packages and Data Transferability: A CAD package is used to
create models that will be used for analysis, manufacturing, or some other applications.
Therefore, a CAD software should be capable of transferring and accepting files from other
CAD or CAM programs, without this provision, the CAD program has only a very limited
use.

• Design Documentation: Besides creating a model, the software should be capable of
creating drawings, assemblies, dimensioning, various views (isometric, orthogonal, etc.),
labels and attributes, etc.

Handbook on Computer Aided Design by R. B. Agarwal 1-11

Chapter1 Introduction

1.9 Mechanical Engineering Applications of CAD

Following is a brief description of the applications of CAD in mechanical engineering.

• Two Dimensional Drafting: This is the most common use of a CAD package. 2-D
drawings are used for manufacturing a product.

• Report Generating: To generate reports and bill of materials. Spreadsheets and
word-processors can be linked to provide a report writing facility.

• 3-D modelling: To create the wireframe, surface and solid models. The 3-D models
are for concept verification, manufacturing, FEA, etc.

• Finite Element Analysis: FEA package is used for pre-processing, analysis, and
post-analysis of structures. For this application, a CAD package contains both the
modeling and analysis modules.

• Manufacturing: manufacturing software is usually called CAM, and contains CAD
software as one of the components. CAM software provides capabilities of carrying
out 2 and 3-axes machining.

Handbook on Computer Aided Design R. B. Agarwal 1-12

Chapter 2 – Two Dimensional Transformation

CHAPTER 2

TWO-DIMENSIONAL TRANSFORMATION

2.1 Introduction

As stated earlier, Computer Aided Design consists of three components, namely,
Design (Geometric), Analysis (FEA, etc), and Visualization (Computer Graphics).
Geometric provides a mathematical description of a geometric object - point, line, conic
section, surface, or a solid. Visualization dea .ls with creation of visual effects
e.eg., creation of pie charts, contol plots, shading, animation, etc. Computer graphics
provides visual displays and manipulations of objects, e.g., transformation, editing,
printing, etc. Fortran and visual C languages are used to effect these operations.
Transformation is the backbone of computer graphics, enabling us to manipulate the
shape, size, and location of the object. It can be used to effect the following changes in a
geometric object:
• Change the location
• Change the Shape
• Change the size
• Rotate
• Copy
• Generate a surface from a line
• Generate a solid from a surface
• Animate the object

Handbook on Computer Aided Design by R. B. Agarwal 2-1

Chapter 2 – Two Dimensional Transformation

2.2 Two-Dimensional Transformation

Geometric transformations have numerous applications in geometric, e.g., manipulation
of size, shape, and location of an object. In CAD, transformation is also used to generate
surfaces and solids by sweeping curves and surfaces, respectively. The term ‘sweeping’
refers to parametric transformations, which are utilized to generate surfaces and solids.
When we sweep a curve, it is transformed through several positions along or around an
axis, generating a surface. The appearance of the generated surface depends on the
number of instances of the transformation. A parameter t or s is varied from 0 to 1, with
the interval value equal to the fraction of the parameter. For example, to generate 10
instances, the parameter will have a value t/10 or s/10. To develop an easier
understanding of transformations, we will first study the two-dimensional transformations
and then extend it to the study of three-dimensional transformations. Until we get to the
discussion of surfaces and solids, we will limit our discussion of transformation to only
the simple cases of scaling, translation, rotation, and the combinations of these.
Applications of transformations will become apparent when we discuss the surface and
solid modelling.

There are two types of transformations:

Modelling Transformation: this transformation alters the coordinate values of the object. Basic
operations are scaling, translation, rotation and, combination of one or more of these basic
transformations. Examples of these transformations can be easily found in any commercial
CAD software. For instance, AutoCAD uses SCALE, MOVE, and ROTATE commands for
scaling, translation, and rotation transformations, respectively.

Visual Transformation: In this transformation there is no change in either the geometry or the
coordinates of the object. A copy of the object is placed at the desired sight, without
changing the coordinate values of the object. In AutoCAD, the ZOOM and PAN commands
are good examples of visual transformation.

Handbook on Computer Aided Design by R. B. Agarwal 2-2

Chapter 2 – Two Dimensional Transformation

2.3 Basic modelling Transformations

There are three basic transformations: Scaling, Translation, and Rotation. Other
transformations, which are modification or combination of any of the basic transformations, are
Shearing, Mirroring, copy, etc.

Let us look at the procedure for carrying out basic transformations, which are based on
matrix operation. A transformation can be expressed as

[P*] = [P] [T]

where, [P*] is the new coordinates matrix
[P] is the original coordinates matrix, or points matrix
[T] is the transformation matrix

With the z-terms set to zero, the P matrix can be written as,

x1 y1 0
 x2 y2 0

[P] = x3 y3 0 (2.1)

 xn yn 0

The size of this matrix depends on the geometry of the object, e.g., a point is defined by a single
set of coordinates (x1, y1, z1), a line is defined by two sets of coordinates (x1, y1, z1) and (x2, y2,
z2), etc. Thus a point matrix will have the size 1x3, line will be 2x3, etc.

A transformation matrix is always written as a 4x4 matrix, with a basic shape shown below,

1 0 0 0
 [T] = 0 1 0 0 (2.2)

0 0 1 0
0 0 0 1

Values of the elements in the matrix will change according to the type of transformation being
used, as we will see shortly. The transformation matrix changes the size, position, and orientation
of an object, by mathematically adding, or multiplying its coordinate values. We will now
discuss the mathematical procedure for scaling, translation, and rotation transformations.

Handbook on Computer Aided Design by R. B. Agarwal 2-3

Chapter 2 – Two Dimensional Transformation

2.4 Scaling

In scaling transformation, the original coordinates of an object are multiplied by the given scale
factor. There are two types of scaling transformations: uniform and non-uniform. In the uniform
scaling, the coordinate values change uniformly along the x, y, and z coordinates, where as, in
non-uniform scaling, the change is not necessarily the same in all the coordinate directions.

2.4.1 Uniform Scaling

For uniform scaling, the scaling transformation matrix is given as

s 0 0 0
 0 s 0 0

[T] = 0 0 s 0 (2.3)
0 0 0 1

Here, s is the scale factor.

2.4.2 Non-Uniform Scaling
Matrix equation of a non-uniform scaling has the form:

sx 0 0 0
0 sy 0 0

[T] = 0 0 sz 0 (2.4)
 0 0 0 1

where, sx, sx, sx are the scale factors for the x, y, and z coordinates of the object.

Handbook on Computer Aided Design by R. B. Agarwal 2-4

Chapter 2 – Two Dimensional Transformation

2.5 Homogeneous Coordinates

Before proceeding further, we should review the concept of homogeneous coordinate system.
Since the points matrix has three columns for the x, y, and z values, and a transformation matrix
is always 4x4 matrix, the two matrices are incompatible for multiplication. A matrix
multiplication is compatible only if the number of columns in the first matrix equals the number
of row in the second matrix. For this reason, a points matrix is written as,

 x1 y1 z1 1
 x2 y2 z2 1

[P] = x3 y3 z3 1 (2.5)

xn yn zn 1

Here, we have converted the Cartesian coordinates into homogeneous coordinates by adding a 4th
column, with unit value in all rows. When a fourth column, with values of 1 in each row, is
added in the points matrix, the matrix multiplication between the [P] and [T] becomes
compatible. The values (x1, y1, z1, 1) represent the coordinates of the point (x1, y1, z1), and the
coordinates are called as homogeneous coordinates. In homogeneous coordinates, the points
(2,3,1), (4,6,2), (6,9,3), (8,12,4), represent the same point (2,3,1), along the plane z = 1, z = 2, z =
3, and z = 4, respectively. In our subsequent discussion on transformation, we will use
homogeneous coordinates.

Example 1: If the triangle A(1,1), B(2,1), C(1,3) is scaled by a factor 2, find the new coordinates
of the triangle.

Solution: Writing the points matrix in homogeneous coordinates, we have

1 1 0 1
[P] = 2 1 0 1

1 3 0 1

Handbook on Computer Aided Design by R. B. Agarwal 2-5

Chapter 2 – Two Dimensional Transformation

and the scaling transformation matrix is, 2 0 0 0
0 2 0 0

[Ts] = 0 0 2 0
0 0 0 1

The new points matrix can be evaluated by the equation

[P*] = [P] [T], and by substitution of the P and T values, we get

1 1 0 1 2 0 0 0 2 2 0 1
P* = 2 1 0 1 0 2 0 0 = 4 2 0 1

1 3 0 1 0 0 2 0 2 6 0 1
0 0 0 1

 y

Transformed by scaling

Original

 x

Note that the new coordinates represent the original value times the scale factor. The old and the
new positions of the triangle are shown in the figure.

Handbook on Computer Aided Design by R. B. Agarwal 2-6

Chapter 2 – Two Dimensional Transformation

2.6 Translation Transformation

In translation, every point on an object translates exactly the same distance. The effect of a
translation transformation is that the original coordinate values increase or decrease by the
amount of the translation along the x, y, and z-axes. For example, if line A(2,4), B(5,6) is
translated 2 units along the positive x axis and 3 units along the positive y axis, then the new
coordinates of the line would be

A’(2+2, 4+3), B’(5+2, 6+3) or

A’(4,7), B’(7,9).

The transformation matrix has the form:

1 0 0 0
0 1 0 0

[Tt] = 0 0 1 0 (2.6)
x y 0 1

where, x and y are the values of translation in the x and y direction, respectively. For translation
transformation, the matrix equation is

[P*] = [P] [Tt] (2.7)

where, [Tt] is the translation transformation matrix.

Example 2: Translate the rectangle (2,2), (2,8), (10,8), (10,2) 2 units along x-axis and 3
units along y-axis.

Solution: Using the matrix equation for translation, we have

[P*] = [P] [Tt], substituting the numbers, we get

Handbook on Computer Aided Design by R. B. Agarwal 2-7

Chapter 2 – Two Dimensional Transformation

2 2 0 1 1 0 0 0
[P*] = 2 8 0 1 0 1 0 0

10 8 0 1 0 0 1 0
10 2 0 1 2 3 0 1

 4 5 0 1
4 11 0 1

 = 12 11 0 1
12 5 0 1

Note that the resultant coordinates are equal to the original x and y values plus the 2 and 3 units
added to these values, respectively.

Handbook on Computer Aided Design by R. B. Agarwal 2-8

Chapter 2 – Two Dimensional Transformation

2.7 Rotation

We will first consider rotation about the z-axis, which passes through the origin (0,0,0), since it
is the simplest transformation for understanding the rotation transformation. Rotation about an
arbitrary axis, other than an axis passing through the origin, requires a combination of three or
more transformations, as we will see later.

When an object is rotated about the z-axis, all the points on the object rotate in a circular arc, and
the center of the arc lies at the origin. Similarly, rotation of an object about an arbitrary axis has
the same relationship with the axis, i.e., all the points on the object rotate in a circular arc, and
the center of rotation lies at the given point through which the axis is passing.

2.7.1 Derivation of the Rotation Transformation Matrix
Using trigonometric relations, as given below, we can derive the rotation transformation
matrix. Let the point P(x, y) be on the circle, located at an angle α, as shown. If the point
P is rotated an additional angle θ, the new point will have the coordinates (x*, y*). The
angle and the original coordinate relationship is found as follows.

x = r cos α
 Original coordinates of point P.

y = r sin α

x* = rcos(α + θ)
 The new coordinates.

y* = rsin(α + θ)

where, α is the angle
between the line joining the initial position of the
point and the x-axis, and θ is the angle between
the original and the new position of the point.

Handbook on Computer Aided Design by R. B. Agarwal 2-9

Chapter 2 – Two Dimensional Transformation

Using the trigonometric relations,
we get,

 x* = r (cosα cosθ - sinα sinθ) = x cosθ - y sinθ
 y* = r (cosα sinθ + sinα cosθ) = x sinθ + y cosθ

In matrix form we can write these equations as

cosθ sinθ
[x* y*] = [x y] - sinθ cosθ (2.8)

In general, the points matrix and the transformation matrix given in equation (2.8) are re-written
as

cosθ sinθ 0 0
[x* y* 0 1] = [x y 0 1] -sinθ cosθ 0 0

0 0 1 0 (2.9)
0 0 0 1

Thus, a point or any object can be rotated about the z-axis (in 2-D) and the new coordinates of
the object found by the product of the points matrix and the rotation matrix, derived here.

2.7.2 Rotation of an Object about an Arbitrary Axis
Rotation of a geometric model about an arbitrary axis, other than any of the coordinate axes,
involves several rotational and translation transformations. When we rotate an object about the
origin (in 2-D), we in fact rotate it about the z-axis. Every point on the object rotates along a
circular path, with the center of rotation at the origin. If we wish to rotate an object about an
arbitrary axis, which is perpendicular to the xy-plane, we will have to first translate the axis to
the origin and then rotate the model, and finally, translate so that the axis of rotation is restored
to its initial position. If we erroneously use the equation (2.9) directly, to rotate the object about a
fixed axis, and skip the translation of this point to the origin, we will in fact end up rotating the
object about the z-axis, and not about the fixed axis.

Thus, the rotation of an object about an arbitrary axis, involves three steps:

Step 1: Translate the fixed axis so that it coincides with the z-axis
Step 2: Rotate the object about the axis
Step 3: Translate the fixed axis back to the original position.

Handbook on Computer Aided Design by R. B. Agarwal 2-10

Chapter 2 – Two Dimensional Transformation

Note: When the fixed axis is translated, the object is also translated. The axis and the object go
through all the transformations simultaneously.

We will now illustrate the above procedure by the following example.

Example 3: Rotate the rectangle (0,0), (2,0), (2, 2), (0, 2) shown below, 300 ccw about
its centroid and find the new coordinates of the rectangle.

(0,2) (2,2)

 (0,0) (2,0)

Solution: Centroid of the rectangle is at point (1, 1). We will first translate the centroid to the
origin, then rotate the rectangle, and finally, translate the rectangle so that the centroid is restored
to its original position.

1. Translate the centroid to the origin: The matrix equation for this step is

 0 0 0 1
[P*]1 = [P] [Tt], where [P] = 2 0 0 1

2 2 0 1
0 2 0 1

1 0 0 0
0 1 0 0

and [Tt] = 0 0 1 0
-1 -1 0 1

Handbook on Computer Aided Design by R. B. Agarwal 2-11

Chapter 2 – Two Dimensional Transformation

2. Rotate the Rectangle 300 ccw About the z-axis: The matrix equation for this step is given
as

[P*]2 = [P*]1 [Tr], where, [P*]1 is the resultant points matrix obtained in step 1, and [Tr] is the
rotation transformation, where θ = 300 ccw. The transformation matrix is,

cosθ sinθ 0 0 .866 .5 0 0
 -sinθ cosθ 0 0 = -.5 .866 0 0

[Tr]θ = 0 0 1 0 0 0 1 0
 0 0 0 1 0 0 0 1

3. Translate the Rectangle so that the Centroid Lies at its Original Position: The matrix
equation for this step is

 [P*]3 = [P*]2 [T-t], where [T-t] is the reverse translation matrix, given as

1 0 0 0
[T-t] = 0 1 0 0

0 0 1 0
1 1 0 1

Now we can write the entire matrix equation that combines all the three steps outlined above.
The equation is,

[P*] = [P] [Tt] [Tr] [T-t]

Handbook on Computer Aided Design by R. B. Agarwal 2-12

Chapter 2 – Two Dimensional Transformation

Substituting the values given earlier, we get,

0 0 0 1 1 0 0 0 cos300 sin300 0 0
[P*] = 2 0 0 1 0 1 0 0 -sin300 cos300 0 0 x

2 2 0 1 0 0 1 0 0 0 1 0
0 2 0 1 -1 -1 0 1 1 1 0 1

1 0 0 0
0 1 0 0
0 0 1 0
1 1 0 1

0.6340 -0.3660 0 1
-0.3660 1.3660 0 1

= 1.3660 2.3660 0 1
-0.3660 1.3660 0 1

The first two columns represent the new coordinates of the rotated rectangle.

Handbook on Computer Aided Design by R. B. Agarwal 2-13

An example of Rotational Transformaion.

Chapter 2 – Two Dimensional Transformation

2.8 Combined Transformations

Most applications require the use of more than one basic transformation to achieve desired
results. As stated earlier, scaling with an arbitrarily fixed point involves both scaling and
translation. And rotation around a given point, other than the origin, involves rotation and
translation. We will now consider these combined transformations.

2.8.1 Scaling With an Arbitrary Point
In uniform scaling, all points and their coordinates are scaled by a factor s. Therefore, unless the
fixed point is located at (0, 0), it will be moved to a new location with coordinates s-times x and
s-times y. To scale an object about a fixed point, the fixed point is first moved to the origin and
then the object is scaled. Finally, the object is translated or moved so that the fixed point is
restored to its original position. The transformation sequence is,

[P*] = [P] [Tt] [Ts] [T-t]

Where, [Tt] is the translation transformation matrix, for translation of the fixed point to
the origin,

 [Ts] is the scaling transformation matrix, and

[T-t] is the reverse translation matrix, to restore the fixed point to its original
position.

Note: The order of matrix multiplication progresses from left to right and the order should not be
changed.

The three transformation matrices [Tt] [Ts] [T-t] can be concatenated to produce a single
transformation matrix, which uniformly scales an object while keeping the pivot point fixed.
Thus, the resultant, concatenated transformation matrix for scaling is,

1 0 0 0 s 0 0 0 1 0 0 0
0 1 0 0 0 s 0 0 0 1 0 0

[Ts]R = 0 0 1 0 0 0 s 0 0 0 1 0
 -x -y 0 1 0 0 0 1 x y 0 1

Handbook on Computer Aided Design by R. B. Agarwal 2-14

Chapter 2 – Two Dimensional Transformation

s 0 0 0
0 s 0 0

 = 0 0 s 0 (2.10)
x-sx y-sy 0 1

The concatenated equation can be used directly instead of the step-by-step matrix solution. This
form is preferable when writing a CAD program.

Example 4: Given the triangle, described by the homogeneous points matrix below, scale it by a
factor 3/4, keeping the centroid in the same location. Use (a) separate matrix operation and (b)
condensed matrix for transformation.

2 2 0 1
[P] = 2 5 0 1

5 5 0 1

Solution

(a) The centroid of the triangle is at,

x = (2+2+5)/3 = 3, and y = (2+5+5)/3 = 4 or the centroid is C(3,4).

We will first translate the centroid to the origin, then scale the triangle, and finally translate it
back to the centroid. Translation of triangle to the origin will give,

2 2 0 1 1 0 0 0 -1 -2 0 1
 [P*]1 = [P] [Tt] = 2 5 0 1 0 1 0 0 = -1 1 0 1

5 5 0 1 0 0 1 0 2 1 0 1
-3 -4 0 1

Scaling the triangle, we get,

 -1 -2 0 1 .75 0 0 0 -0.75 -1.5 0 1
 [P*]2 = [P*]1 [Ts] = -1 1 0 1 0 .75 0 0 = -0.75 0.75 0 1

2 1 0 1 0 0 .75 0 1.5 0.75 0 1
0 0 0 1

Handbook on Computer Aided Design by R. B. Agarwal 2-15

Chapter 2 – Two Dimensional Transformation

Translating the triangle so that the centroid is positioned at (3, 4), we get

1 0 0 0
-.75 -1.5 0 1 0 1 0 0 2.25 2.5 0 1

 [P*] = [P*]2 [T-t] = -.75 .75 0 1 0 0 1 0 = 2.25 4.75 0 1
 1.5 .75 0 1 3 4 0 1 4.5 4.75 0 1

(b) The foregoing set of three operations can be reduced to a single operation using the
condensed matrix with x = 3, and y = 4. See equation (2.10) on page 16.

0.75 0 0 0
2 2 0 1 0 0.75 0 0

[P*] = [P] [Tcond] = 2 5 0 1 0 0 0.75 0
5 5 0 1 3-0.75(3) 4-0.75(4) 0 1

2.25 2.5 0 1
 = 2.25 4.75 0 1

4.5 4.75 0 1

2.8.2 Rotation About an Arbitrary Point (in xy-plane)
In order to rotate an object about a fixed point, the point is first moved (translated) to the origin.
Then, the object is rotated around the origin. Finally, it is translated back so that the fixed point
is restored to its original position. For rotation of an object about an arbitrary point, the sequence
of the required transformation matrices and the condensed matrix is given as,

[Tcond] = [Tt] [Tr] [T-t] or

Handbook on Computer Aided Design by R. B. Agarwal 2-16

Chapter 2 – Two Dimensional Transformation

1 0 0 0 cosθ sinθ 0 0 1 0 0 0
0 1 0 0 -sinθ cosθ 0 0 0 1 0 0

[Tcond] = 0 0 1 0 0 0 1 0 0 0 1 0 (2.11)
-x -y 0 1 0 0 0 1 x y 0 1

where, θ is the angle of rotation and the point (x, y) lies in the xy plane.

Example 5: Rotate the rectangle formed by points A(1,1), B(2,1), C(2,3), and D(1,3) 300 ccw
about the point (3,2).

 y

 D(1,3) C C (2,3)

 . . (3,2)

x
A(1,1) B(2,1)

Solution: We will first translate the point (3,2) to the origin, then rotate the rectangle about the
origin, and finally, translate the rectangle back so that the original point is restores to its original
position (3,2). The new coordinates of the rectangle are found as follows.

[P*] = [P] [Tt] [Tr] [T-t]

1 1 0 1 1 0 0 0 .866 .5 0 0 1 0 0 0
2 1 0 1 0 1 0 0 -.5 .866 0 0 0 1 0 0

= 2 3 0 1 0 0 1 0 0 0 1 0 0 0 1 0
1 3 0 1 -3 -2 0 1 0 0 0 1 3 2 0 1

Handbook on Computer Aided Design by R. B. Agarwal 2-17

Chapter 2 – Two Dimensional Transformation

 1.77 .13 0 1
 0.77 1.87 0 1 These are the new coordinates of the rectangle

= 1.63 2.37 0 1 after the rotation.
 2.63 0.63 0 1

Handbook on Computer Aided Design by R. B. Agarwal 2-18

 An example of Combined Transformation.

Chapter 2 – Two Dimensional Transformation

2.9 Mirroring

In modelling operations, one frequently used operation is mirroring an object. Mirroring is
a convenient method used for copying an object while preserving its features. The mirror
transformation is a special case of a negative scaling, as will be explained below.

Let us say, we want to mirror the point A(2,2) about the x-axis(i.e., xz-plane), as shown in the
figure.

The new location of the point, when reflected about the x-axis, will be at (2, -2). The point
matrix [P*] = [2 -2] can be obtained with the matrix transformation given below.

y
1 0 0 0
0 -1 0 0 A(2, 2)

[P*] = [2 2 0 1] 0 0 1 0
0 0 0 1

x

A’(2, -2)
 = [2 -2 0 1]

The transformation matrix above is a special case of a non-uniform scaling with sx =1 and
sy = -1. We can extend this concept to mirroring around the y, z, and any arbitrary axis, as will be
explained in the following discussion.

Handbook on Computer Aided Design by R. B. Agarwal 2-19

Chapter 2 – Two Dimensional Transformation

2.9.1 Mirroring About an Arbitrary Plane
If mirroring is required about an arbitrary plane, other than one defined by the coordinate axes,
translation and/or rotation can be used to align the given plane with one of the coordinate planes.
After mirroring, translation or rotation must be done in reverse order to restore the original
geometry of the axis.

We will use the figure shown below, to illustrate the procedure for mirroring an object about an
arbitrary plane. We will mirror the given rectangle about a plane passing through the line AB and
perpendicular to the xy-plane. It should be noted that in each of the transformations, the plane
and the rectangle have a fixed relationship, i.e., when we move the plane (or line AB, the
rectangle also moves with it. A step-by-step procedure for mirroring the rectangle about the
plane follows.

Note: We are using line AB to represent the plane, which passes through it. Mirroring can be
done only about a plane, and not about a line.

Step 1: Translate the line AB (i.e., the plane) such that it passes through the origin, as shown by
the dashed line.

B

 y

 A

x

Step 2: Next, rotate the line about the origin (or the z-axis) such that it coincides with x or y
 axes (we will use the x-axis).

Step 3: Mirror the rectangle about the x-axis.

Step 4: Rotate the line back to its original orientation.

Step 5: Translate the line back to its original position.

Handbook on Computer Aided Design by R. B. Agarwal 2-20

Chapter 2 – Two Dimensional Transformation

The new points matrix, in terms of the original points matrix and the five transformation
matrices is given as,

[P*] = [P] [Tt] [Tr] [Tm] [T-r] [T-t] (Note: A negative sign is used in the subscripts
 to indicate a reverse transformation).

Where, the subscripts t, r, and m represent the translation, rotation, and mirror operations,
respectively.

Handbook on Computer Aided Design by R. B. Agarwal 2-21

Chapter 3 - Three Dimensional transformation

CHAPTER 3

THREE-DIMENSIONAL TRANSFORMATION

3.1 Introduction

A three-dimensional object has a three-dimensional geometry, and therefore, it
requires a three-dimensional coordinate transformation. A right-handed
coordinate system is used to carry out a 3-D transformation.

The scaling and translation transformations are essentially the same as two-
dimensional transformations. However, the points matrix will have a non-zero 3rd
column. Additionally, the transformation matrices contain some non-zero values
in the third row and third column, as shown below.

A general scaling transformation matrix is given as:

sx 0 0 0
0 sy 0 0

 [Ts] = 0 0 sz 0
0 0 0 1 (3.1)

Where, sx, sy, sz are scale factors along x, y, and z-axes, respectively.

Translation Transformation matrix: 1 0 0 0
0 1 0 0

[Tt] = 0 0 1 0 (3.2)
x y z 1

Handbook on Computer Aided Design by R. B. Agarwal 3-1

Chapter 3 - Three Dimensional transformation

3.2 Rotation Transformation

The two-dimensional rotation transformation is in reality a special case of a three-
dimensional rotation about the z-axis. We will denote it by [Trz], where, the second
subscript z indicates rotation about the z-axis. Similarly, rotation about the x and y-axes
are denoted as [Trx], and [Try], respectively. The transformation matrices are given below.

cosθ sinθ 0 0
-sinθ cosθ 0 0

[Trz] = 0 0 1 0 (3.3)
0 0 0 1

1 0 0 0
0 cosθ sinθ 0

[Trx] = 0 -sinθ cosθ 0 (3.4)
0 0 0 1

cosθ 0 -sinθ 0
0 1 0 0

 [Try] = sinθ 0 cosθ 0 (3.5)
0 0 0 1

We will now present some examples of 3-D transformations.

Handbook on Computer Aided Design by R. B. Agarwal 3-2

Chapter 3 - Three Dimensional transformation

Three-dimensional Scaling Example

Example 1: The coordinates of a cube are given below. Scale the cube uniformly by1/2.

0 0 0 1
2 0 0 1
2 2 0 1
0 2 0 1

[P] = 0 0 2 1
2 0 2 1
2 2 2 1
0 2 2 1

Solution: The new coordinates of the cube are found by the product of the points matrix
and the scaling matrix,

0 0 0 1 0 0 0 1
2 0 0 1 1 0 0 1
2 2 0 1 1 1 0 1

[P*] = [P] [Ts] = 0 2 0 1 ½ 0 0 0 0 1 0 1
0 0 2 1 0 ½ 0 0 = 0 0 1 1
2 0 2 1 0 0 ½ 0 1 0 1 1
2 2 2 1 0 0 0 1 1 1 1 1
0 2 2 1 0 1 1 1

Three-Dimensional Rotation Example

Next, we will consider rotation about the x and y-axes. Note that the expression for
rotation about the y-axis has a negative sign associated with the sinθ term in the first row
(unlike the x and z-axes rotation, where the negative sign is associated with the sinθ term
in the second and the third rows, respectively). Also, the right-hand-thumb rule must be
followed when applying the value of angle θ. For example, if the angle of rotation is
given as 300 clockwise, the value used in the Sine and Cosine terms should be (-300), and
not (+300).

Handbook on Computer Aided Design by R. B. Agarwal 3-3

Chapter 3 - Three Dimensional transformation

Note: Clockwise and counter-clockwise directions are determined by the right-hand-
thumb rule.

Example 2: The points matrix for a wedge is given as follows. Rotate the wedge 300 ccw
around the x-axis and then 450 cw around the y-axis. The points matrix is,

0 0 0 1
0 0 2 1
4 0 0 1

 [P] = 4 0 2 1
0 3 0 1
0 3 2 1

Solution: First, we will rotate the wedge around the x-axis, and then about the y-axis.

Rotation about the x-axis,

0 0 0 1
0 0 2 1 1 0 0 0
4 0 0 1 0 cos(300) sin(300) 0

 [P*]x = 4 0 2 1 0 -sin(300) cos(300) 0
0 3 0 1 0 0 0 1
0 3 2 1

Handbook on Computer Aided Design by R. B. Agarwal 3-4

Chapter 3 - Three Dimensional transformation

Next, we rotate the wedge about the y-axis,

0 0 0 1
0 0 2 1 1 0 0 0
4 0 0 1 0 cos(300) sin(300) 0

[P*] = 4 0 2 1 0 -sin(300) cos(300) 0
0 3 0 1 0 0 0 1
0 3 2 1

cos(-450) 0 -sin (-450) 0 0 0 0 1
 0 1 0 0 -1.22 -1 1.22 1
sin(-450) 0 cos(-450) 0 = 2.82 0 2.82 1
 0 0 0 1 1.6 -1 4.05 1

Note that, rotation about the axis is positive and hence, +300. Where as rotation about the
y-axis is negative – 450.

Handbook on Computer Aided Design by R. B. Agarwal 3-5

Chapter 3 - Three Dimensional transformation

3.3 Rotation of an object about an Arbitrary Axis

A 3-D rotation of a geometric model about an arbitrary axis is complex, and involves
several rotation and translation transformations. Following is a step by step procedure to
accomplish the transformation.
1. Translate the given axis so that it will pass through the origin.
2. Rotate the axis about x-axis (or y-axis) so that it will lie in the xz-plane (angle α).
3. Rotate the axis about the y-axis so that it will coincide with the z-axis (angle ϕ).
4. Rotate the geometric object about the z-axis (angle θ).
5. Reverse of step 3.
6. Reverse of step 2.
7. Reverse of step 1.

We will illustrate this procedure by the following example.

Example 3: Rotate the rectangle shown, 300 ccw about the line EF and find the new
coordinates of the rectangle.

 F(1,4,6)

y

2
 E(0,2,2)

 2

x
 (0,0,0)

 z

Solution: We will make use of the seven-step procedure outlined above and write the
applicable transformation matrix in each step. After we have generated all the
transformation matrices, we will solve for the new coordinates of the rectangle at the end
of the 7th step.

Handbook on Computer Aided Design by R. B. Agarwal 3-6

Chapter 3 - Three Dimensional transformation

1. Translate the given axis so that it will pass through the origin

Translation of the line EF to origin is given as,

0 0 0 1 1 0 0 0
2 0 0 1 0 1 0 0

[P*]1 = [P] [Tt], where [P] = 2 2 0 1 and [Tt] = 0 0 1 0
0 2 0 1 0 -2 -2 1

2. Rotate the axis so that it will lie in the yz-plane

The line EF is now rotated an angle α, about the x-axis so that it will lie in the xz-plane.
The angle α is calculated with trigonometric relations, shown in the figure.

a = 1
Cosα = c/d = c/√(b2 + c2)

= 4/(4.4721) = .8944

 Sinα = b/d = 2/(4.4721) = .4472 b = 2

Now, [P*]2 = [P][Tt][Tr]α, where, b
 c = 4

ϕ

1 0 0 0 1 0 0 0
0 cosα sinα 0 0 .8944 .4472 0

[Tr]α = 0 -sinα cosα 0 = 0 -.4472 .8944 0
0 0 0 1 0 0 0 1

Handbook on Computer Aided Design by R. B. Agarwal 3-7

Chapter 3 - Three Dimensional transformation

3. Rotate the line so that it will coincide with the z-axis

We will now rotate the line an angle ϕ about the y-axis so that it will coincide with the z-
axis. The value of the angle ϕ is calculated from the trigonometry of the figure shown.

sinϕ = a/L = 1/√(a2 + b2 + c2) = 1/(4.5825) = 0.2182

cosϕ = d/L = (4.4721)/(4.5825) = 0.9759

Now, the points matrix at this step is [P*]3 = [P*]2[Tr]ϕ, and

cosϕ 0 -sinϕ 0 0.9759 0 -0.2182 0
 0 1 0 0 0 1 0 0

 [Tr]ϕ = sinϕ 0 cosϕ 0 = 0.2182 0 0.9759 0
 0 0 0 1 0 0 0 1

4. Rotate the Geometric Object about the z-axis

Up to this point we have translated and rotated the rectangle so that its original position is
changed and the line is coincident with the z-axis. To understand the effect of these steps,
imagine that the rectangle and the line are frozen in space in a box. Now, move (translate)
the line to the origin so that the new coordinates of the point E are (0,0,0), rotate the box
about the x-axis, so that the line EF lies in the xz-plane, finally, rotate the box about the
y-axis so that it coincides with the z-axis. The noteworthy point in this analogy is that the
transformation carried out in steps 1 through 3, affect both the coordinates of the line as
well as that of the rectangle. Now we are ready to carry out the rotation of the rectangle
about line EF. Since the axis of rotation is now coincident with the z-axis, we can apply
the equation of rotation about the z-axis, defined earlier. Therefore,

cosθ sinθ 0 0 0.866 0.5 0 0
-sinθ cosθ 0 0 -0.5 0.866 0 0

[Tr]θ = 0 0 1 0 = 0 0 1 0
 0 0 0 1 0 0 0 1

Handbook on Computer Aided Design by R. B. Agarwal 3-8

Chapter 3 - Three Dimensional transformation

5. Reverse of Step 3

In this step we will rotate the frozen box an angle -ϕ, about the y-axis. Since cos (-ϕ) =
cosϕ, and sin(-ϕ) = -sin(ϕ), the transformation matrix is,

cos(-ϕ) 0 -sin(-ϕ) 0 0.9759 0 0.2182 0
0 1 0 0 0 1 0 0

[Tr]-ϕ = sin(-ϕ) 0 cos(-ϕ) 0 = -0.2182 0 0.9759 0
0 1 0 0 0 1 0 0 1

6. Reverse of Step 2

Rotate the box an angle -α about the x-axis. The transformation matrix is,

1 0 0 0 1 0 0 0
0 cos(-α) sin(-α) 0 0 0.8944 -0.4472 0

 [Tr]-α = 0 -sin(-α) cos(-α) 0 = 0 0.4472 0.8944 0
0 0 0 1 0 0 0 1

7. Reverse of Step 1

In this final step, we will translate the box so that the corner E will move back to its
original coordinates (0,2,2). The transformation matrix is,

1 0 0 0
0 1 0 0

 [T-t] = 0 0 1 0
0 2 2 1

Handbook on Computer Aided Design by R. B. Agarwal 3-9

Chapter 3 - Three Dimensional transformation

This completes all the seven steps that are necessary to rotate the rectangle about the line
EF. The new coordinates of the rectangle are given by the equation,

[P*] = [P] [Tt] [Tr]α [Tr]ϕ [Tr]θ [Tr]-ϕ [Tr]-α [T-t]

The concatenated transformation matrix is,

0.9312 0.1634 -0.3256 0
-0.1743 0.9846 -0.0044 0

 [T]c = [Tt] [Tr]α [Tr]ϕ [Tr]θ [Tr]-ϕ [Tr]-α [T-t] = 0.3199 0.0609 0.9454 0
-0.2913 -0.0909 0.1179 1

0 0 0 1 0.9312 0.1634 -0.3256 0
2 0 0 1 -0.1743 0.9846 -0.0044 0

and [P*] = [P][T]c = 2 2 0 1 0.3199 0.0609 0.9454 0
0 2 0 1 -0.2913 -0.0909 0.1179 1

-0.2913 -0.0909 0.1179 1
1.5712 0.2359 -0.5334 1

= 1.2226 2.2051 -0.5421 1
-0.6399 1.8783 0.1092 1

Handbook on Computer Aided Design by R. B. Agarwal 3-10

Chapter 4 - Curves

CHAPTER 4

CURVES

4.1 Introduction

In order to understand the significance of curves, we should look into the types of model
representations that are used in geometric modelling. Curves play a very significant role in
CAD modelling, especially, for generating a wireframe model, which is the simplest form for
representing a model.

We can display an object on a monitor screen in three different computer-model forms:
• Wireframe model
• Surface Model
• Solid model

Wireframe model: A wireframe model consist of points and curves only, and looks as if its
made up with a bunch of wires. This is the simplest CAD model of an object. Advantages of this
type of model include ease of creation and low level hardware and software requirements.
Additionally, the data storage requirement is low. The main disadvantage of a wireframe model
is that it can be very confusing to visualize. For example, a blind hole in a box may look like a
solid cylinder, as shown in the figure.

 A wireframe model – Model of a Solid object with a blind hole

ME 165 Handbook on Computer Aided Design by R. B. Agarwal 4-1

Chapter 4 - Curves

In spite of its ambiguity, a wireframe model is still the most preferred form, because it can be
created quickly and easily to verify a concept of an object. The wireframe model creation is
somewhat similar to drawing a sketch by hand to communicate or conceptualize an object. As
stated earlier, a wireframe model is created using points and curves only.

Surface Model: sweeping a curve around or along an axis can create a surface model. The
figures below show two instances of generating a surface model.

Generating a cylinder by sweeping a circle generating a donut by sweeping a circle
in the direction of an axis around an axis

The appearance or resolution of a surface model depends on the number of sweeping instances
we select. For a realistic looking model, we need to select a large number of instances, requiring
a large computer memory, or, opt for a not-so realistic model by selecting a small number of
instances, and save memory. In some commercial CAD packages we have the option of selecting
the resolution of a model, other packages have a fixed value for resolution that cannot be
changed by users.

Surface models are useful for representing surfaces such as a soft-drink bottle, automobile
fender, aircraft wing, and in general, any complicated curved surface. One of the limitations of a
surface model is that there is no geometric definition of points that lie inside or outside the
surface.

Solid Model: Representation of an object by a solid model is
relatively a new concept. There were only a couple of solids
modelling CAD programs available in late 1980s, and they
required mainframe computers to run on. However, in
1990s, due to the low cost and high speed, PCs have become
the most popular solid modelling software platform,
prompting almost all the CAD vendors to introduce their 3-
D solid modelling software that will run on a PC.

Solid models represent objects in a very realistic and
unambiguous form; however, they require a large amount of
storage memory and high-end computer hardware. A solid
model can be shaded and rendered in desired colors to give it a more realist appearance.

ME 165 Handbook on Computer Aided Design by R. B. Agarwal 4-2

Chapter 4 - Curves

4.2 Role of Curves in Geometric modelling

Curves are used to draw a wireframe model, which consists of points and curves; the curves are
utilized to generate surfaces by performing parametric transformations on them. A curve can be
as simple as a line or as complex as a B-spline. In general, curves can be classified as follows:
• Analytical Curves: This type of curve can be represented by a simple mathematical

equation, such as, a circle or an ellipse. They have a fixed form and cannot be modified to
achieve a shape that violates the mathematical equations.

• Interpolated curves: An interpolated curve is drawn by interpolating the given data points
and has a fixed form, dictated by the given data points. These curves have some limited
flexibility in shape creation, dictated by the data points.

• Approximated Curves: These curves provide the most flexibility in drawing curves of very
complex shapes. The model of a curved automobile fender can be easily created with the help
of approximated curves and surfaces.

In general, sweeping a curve along or around an axis creates a surface, and the generated surface
will be of the same type as the generating curve, e.g., a fixed form curve will generate a fixed
form surface.

As stated earlier, curves are used to generate surfaces. To facilitate the computer-language
algorithm, curves are represented by parametric equations. Non-parametric equations are used
only to locate a point of intersection on the curve, and not for generating them. Let us briefly
discus the parametric and non-parametric form of a curve.

ME 165 Handbook on Computer Aided Design by R. B. Agarwal 4-3

Chapter 4 - Curves

4.3 Parametric and Non-parametric Equations of a Curve

The mathematical representation of a curve can be classified as either parametric or non-
parametric (natural). A non-parametric equation has the form,

y = c1 + c2 x + c3 x2 + c4 x3 Explicit non-parametric equation

This is an example of an explicit non-parametric curve form. In this equation, there is a unique
single value of the dependent variable for each value of the independent variable. The implicit
non-parametric form of an equation is,

(x – xc)2 + (y – yc)2 = r2 Implicit non-parametric equation

In this equation, no distinction is made between the dependent and the independent variables.

Parametric Equations: Parametric equations describe the dependent and independent variables
in terms of a parameter. The equation can be converted to a non-parametric form, by eliminating
the dependent and independent variables from the equation. Parametric equations allow great
versatility in constructing space curves that are multi-valued and easily manipulated. Parametric
curves can be defined in a constrained period (0 ≤ t ≤ 1); since curves are usually bounded in
computer graphics, this characteristic is of considerable importance. Therefore, parametric form
is the most common form of curve representation in geometric modelling. Examples of
parametric and non-parametric equations follow.

Non-Parametric Parametric

Circle: x2 + y2 = r2 x = r cosθ, y = r sinθ

Where, θ is the parameter.

CAD programs prefer a parametric equation for generating a curve. Parametric equations are
converted into matrix equations – to facilitate a computer solution, and then varying a parameter
from 0 to 1 creates the points or curves. In this course, we will use the following parameters,
with the range indicated,

0 ≤ t ≤ 1 0 ≤ s ≤ 1 0 ≤ θ ≤ 2πs 0 ≤ ϕ ≤ 2πs

ME 165 Handbook on Computer Aided Design by R. B. Agarwal 4-4

Chapter 4 - Curves

4.4 Fixed-Form or Analytical Curves

4.4.1 Equation of a Straight Line: The simplest fixed-form curve is a straight line.
Parametric equation of a straight line is given as,

 P(t) = A + (B-A) t (4.1)

The parametric equation of line AB can be derived as,
 B (x2, y2)

 x = x1 + (x2 - x1) t

y = y1 + (y2 - y1) t
 . P (x, y)

where, 0 ≤ t ≤ 1
A (x1, y1)

The point P on the line is sweeped from A to B,
as the value of t is varied from 0 to 1.

4.4.2 Conic Sections or Conic Curves
A conic curve is generated when a plane intersects a cone, as shown.

B

P Q

A A

ME 165 Handbook on Computer Aided Design by R. B. Agarwal 4-5

Chapter 4 - Curves

The intersection of the plane PQ and the cone is a circle, where as, the intersection created by the
plane AB is an ellipse. Other curves that can be created are parabola and hyperbola.

Conic curves are used to create simple wireframe models of objects, which have edges that can
be represented by these analytical curves. The fixed-form or analytical curves do not have
inflection points, i.e., curves have slopes that are either positive or negative and do not change
their sign (positive slope will remain positive and negative slope will remain negative). All conic
curves can be represented by a quadratic equation, for example, circular and elliptical curves
have quadratic polynomial equations.

4.4.3 Circular Curve
The non-parametric equation of a circle is,

(x – xc)2 + (y – yc)2 = r2 (4.2)

Where, xc, and yc are coordinates of the center, and r is radius of the circle.

If we were to use this form of the equation for plotting a circle or a circular curve, we will first
calculate several values of x and y along the circumference of the circle, and then plot them. The
curve thus generated will be of a poor quality, unless we plot a very large number of data points,
which will result in a significant demand for storage of these data points. Therefore, as stated
earlier, in CAD programs, we use a parametric equation, which avoids the need for storage of the
data points, and provides a smooth curve. The parametric equation of the above circle can be
written as,

 xi = xc + r cosθ
 yi = yc + r sinθ (4.3)

This equation is converted into a matrix form so that a computer can solve it. We will now
convert this equation into a matrix form.

 Let us assume that the plot starts at the point (xi, yi), and the center lies at the origin. We
increment θ to (θ +∆θ), giving us the new point on the circle (xi+1, yi+1), or

xi+1 = r cos(θ +∆θ)
yi+1 = r sin(θ +∆θ)

ME 165 Handbook on Computer Aided Design by R. B. Agarwal 4-6

Chapter 4 - Curves

 (xi+1, yi+1)

∇θ (xi, yi)
θ

Expanding it by the use of
trigonometric identities, we get:

xi+1 = r cosθ cos∆θ - r sinθ sin∆θ

yi+1 = r sinθ cos∆θ + r cosθ sin∆θ

Substituting the values: xi = r cosθ, and yi = r sinθ, we get

xi+1 = xi cos∆θ - yi sin∆θ

yi+1 = yi cos∆θ + xi sin∆θ

In matrix form, these equations can be written as,

 cos∆θ sin∆θ 0 0
[xi+1 yi+1 0 1] = [xi yi 0 1] - sin∆θ cos∆θ 0 0 (4.4)

 0 0 1 0
 0 0 0 1

Equation (4.4) is valid for a circle that has center at the origin. To find the equation of a circle
that has center located at an arbitrary point (xc, yc), we can use the translation transformation.
Note that the equation (4.4) can be interpreted as rotational transformation of points xi and yi
about the origin. Now, instead of rotation about the origin, we wish to rotate the point about the
fixed point (xc, yc). This can be accomplished by the three-step approach, discussed in chapter 2,
i.e., first translate the fixed point to the origin, rotate the object, and finally translate it so that the
fixed point is restored to its original position. Using this procedure we will get:

ME 165 Handbook on Computer Aided Design by R. B. Agarwal 4-7

Chapter 4 - Curves

 [xi+1 yi+1 0 1] =

1 0 0 0 cos∆θ sin∆θ 0 0
 [xi yi 0 1] 0 1 0 0 - sin∆θ cos∆θ 0 0

0 0 1 0 0 0 1 0
-xc -yc 0 1 0 0 0 1

1 0 0 0
0 1 0 0 (4.5)
0 0 1 0
xc yc 0 1

Simplifying the equation we get,

xi+1 = xc + (xi – xc) cos∆θ - (yi – yc) sin∆θ

yi+1 = yc + (xi – xc) sin∆θ + (yi – yc) cos∆θ (4.6)

Even though, equations (4.6) can be used as an iterative formula to plot a circle or a circular
curve, using the EXCEL or MATLAB, or any other plot routines, the matrix equation (4.5) is the
preferred form for a CAD program. The original CAD programs used iterative formulas to
generate curves. The BASIC and FORTRAN languages were used to write the CAD codes.

ME 165 Handbook on Computer Aided Design by R. B. Agarwal 4-8

Chapter 4 - Curves

4.4.4 Ellipse
Following the procedure outlined in the previous section, we can derive the parametric equations
of an ellipse. Parametric equation of an ellipse is given by
the equation

xi = a cosθ

yi = b sinθ
2b

For a point on the ellipse, in general, the equation is

xi+1 = xi cos∆θ – (a/b) yi sin∆θ 2a
yi+1 = yi cos∆θ – (b/a) xi sin∆θ (4.7)

For a more general case, when the axes of the ellipse are not parallel to the coordinate axes, and
the center of the ellipse is at a distance xc, yc from the origin, the equation of the ellipse is given
below. Let α be the angle that the major axis makes with the horizontal (x-axis), as shown. The
equation of the ellipse can be derived as

xi = xc + x’i cosα – y’i sinα

yi = yc + x’i sinα + y’i cosα (4.8)

Where, x’ and y’ are the coordinate values of a
Point on the ellipse, in term of the rotated axes
x’ and y’.

Equations (4.8) can be used to write either as an
iterative formula or as a matrix equation for creating
an elliptical curve.

ME 165 Handbook on Computer Aided Design by R. B. Agarwal 4-9

Chapter 4 - Curves

4.5 Interpolated Curves

Interpolation method can be applied to draw curves that pass through a set of the given data
points. The resulting curve can be a straight line, quadratic, cubic, or higher order curve. We are
quite familiar, and have used, the linear interpolation of a straight line, given by the formula

f(x) = f(xi) + [f(xi+1) – f(xi)] [(x-xi) / (xi+1 – xi)] (4.9)

Now, we will discuss the higher order curves, which are represented by higher order
polynomials. Lagrange polynomial is a popular polynomial function used for interpolation of
high order polynomials.

4.5.1 Lagrange Polynomial
When a sequence of planar points (x0, y0), (x1, y1), (x2, y2), ….(xn, yn) is given, the nth degree of
interpolated polynomial can be calculated by the Lagrange Polynomial equation,

 fn (x) = Σ yi Li,n (x) (4.10)

where,

Li,n (x) = [(x –x0)…. (x –xi-1) (x –xi+1)…. (x –xn)] / [(xi –x0)…. (xi –xi-1) (xi –xi+1)…. (xi –xn)]

To understand the above expression better, note that

• The term (x –xi) is skipped in the numerator, and
• The denominator starts with the term (xi –x0) and skips the term (xi –xi), which will make the

expression equal to infinity.

Example: Using the Lagrange polynomial, find the expression of the curve containing the
points, P0(1, 1), P1(2, 2), P2(3, 1)

Solution: Here, n = 2 and x0 =1, y0 = 1, x1 = 2, y1 = 2, etc. The polynomial is of a second
degree. Expanding the Lagrange equation, we get,

f2 (x) = y0 [(x - x1) (x - x2)] / [(x0 – x1) (x0 – x2)] + y1 [(x – x0) (x - x2)] /
[(x1 – x0) (x1 – x2)] + y2 [(x – x0) (x – x1)] / [(x2 – x0) (x2 – x1)]

ME 165 Handbook on Computer Aided Design by R. B. Agarwal 4-10

Chapter 4 - Curves

= (1) [(x – 2) (x – 3)] / [(1 – 2) (1 – 3)] + (2) [(x-1) (x – 3)] / [(2 – 1) (2 – 3)] +
 (1) [(x – 1) (x - 2)] / [(3 – 1) (3- 2)]

 = ½ (x2 – 5x + 6) – 2 (x2 – 4 x + 3) + ½ (x2 – 3 x + 2) or

f2 (x) = - x2 + 4 x – 2

This is the explicit non-parametric equation of a circle; the given points lie on the circumference.

4.5.2 Parametric Cubic Curve or Cubic Spline – Synthetic Curves
The analytical and interpolated curves, discussed in the previous section (4.4) and (4.5) are
insufficient to meet the requirements of mechanical parts that have complex curved shapes, such
as, propeller blades, aircraft fuselage, automobile body, etc. These components contain non-
analytical, synthetic curves. Design of curved boundaries and surfaces require curve
representations that can be manipulated by changing data points, which will create bends and
sharp turns in the shape of the curve. The curves are called synthetic curves, and the data points
are called vertices or control points. If the curve passes through all the data points, it is called an
interpolant (interpolated). Smoothness of the curve is the most important requirement of a
synthetic curve.

Various continuity requirements at the data points can be specified to impose various degrees of
smoothness of the curve. A complex curve may consist of several curve segments joined
together. Smoothness of the resulting curve is assured by imposing one of the continuity
requirements. A zero order continuity (C0) assures a continuous curve, first order continuity (C1)
assures a continuous slope, and a second order continuity (C2) assures a continuous curvature, as
shown below.

 C0 Continuity – The curve is C1 Continuity- Slope Continuity C2 Continuity - Curvature
 Continuous everywhere at the common point continuity at the common point

A cubic polynomial is the lowest degree polynomial that can guarantee a C2 curve. Higher order
polynomials are not used in CAD, because they tend to oscillate about the control points and
require large data storage. Major CAD/CAM systems provide three types of synthetic curves:
Hermite Cubic Spline, Bezier Curves, and B-Spline Curves.

ME 165 Handbook on Computer Aided Design by R. B. Agarwal 4-11

Chapter 4 - Curves

Cubic Spline curves pass through all the data points and therefore they can be called as
interpolated curves. Bezier and B-Spline curves do not pass through all the data points, instead,
they pass through the vicinity of these data points. Both the cubic spline and Bezier curve have
first-order continuity, where as, B-Spline curves have a second-order continuity.

4.5.3 Hermite Cubic Spline
Hermite cubic curve is also known as parametric cubic curve, and cubic spline. This
curve is used to interpolate given data points that result in a synthetic curve, but not a free
form, unlike the Bezier and B-spline curves. The most commonly used cubic spline is a
three-dimensional planar curve (not twisted). The curve is defined by two data points that
lie at the beginning and at the end of the curve, along with the slopes at these points. It is
represented by a cubic polynomial. When two end points and their slopes define a curve,
the curve is called a Hermite cubic curve. Several cubic splines can be joined together by
imposing the slope continuity at the common points. In design applications, cubic splines
are not as popular as the Bezier and B-spline curves. There are two reasons for this:

• The curve cannot be modified locally, i.e., when a data point is moved, the
entire curve is affected, resulting in a global control, as shown in the
figure.

• The order of the curve is always constant (cubic), regardless of the number
of data points. Increase in the number of data points increases shape
flexibility, However, this requires more data points, creating more splines,
that are joined together (only two data points and slopes are utilized for
each spline).

 Effect of Moving the Data Point Effect of Change in slope

4.5.4 Equation of a Cubic Spline
A cubic spline is a third-degree polynomial, defined as

P(t) = Σ ai ti (4.11)

where, 0 ≤ t ≤ 1, and P(t) is a point on the curve.
Expanding the above equation, we get

ME 165 Handbook on Computer Aided Design by R. B. Agarwal 4-12

Chapter 4 - Curves

P(t) = a3 t3 + a2 t2 + a1 t + a0 (4.12)

If (x,y,z) are the coordinates of point P, the equation (4.12) can be written as,

x(t) = a3x t3 + a2x t2 + a1x t + a0x

y(t) = a3y t3 + a2y t2 + a1y t + a0y (4.13)

z(t) = a3z t3 + a2z t2 + a1z t + a0z

There are 12 unknown coefficients, aij, known as the algebraic coefficients. These
coefficients can be evaluated by applying the boundary conditions at the end points. From
the coordinates of the end points of each segment, six of the twelve needed equations are
obtained. The other six equations are found by using the tangent vectors at the two ends
of each segment. Substituting the boundary conditions at t = 0, and t = 1, we get,

P(0) = a0, and (a)

P(1) = a3 + a2 + a1 + a0 (b)

To find the tangent vectors, we differentiate equation (4.12), and get,

P’(t) = 3 a3 t2 + 2 a2 t + a1

Applying the boundary conditions at t = 0 and t = 1, we get,

P’(0) = a1 (c)

P’(1) = 3 a3 + 2 a2 + a1 (d)

Solving for the coefficients in terms of the P(t) and P’(t) values in equations (a) through (d), we
get,

a0 = P(0)
a1 = P’(0)
a2 = -3 P(0) +3 P(1) – 2 P’(0) – P’(1) (4.14)
a3 = 2 P(0) – 2 P(1) + P’(0) + P’(1)

ME 165 Handbook on Computer Aided Design by R. B. Agarwal 4-13

Chapter 4 - Curves

The equation
P(t) = a3 t3 + a2 t2 + a1 t + a0

can be written, with coefficients aij replaced by the P(t) and P’(t) values in equations (4.14),
resulting,

P(t) = [2 P(0) – 2 P(1) + P’(0) + P’(1)] t3 + [-3 P(0) + 3 P(1) – 2 P’(0) – P’(1)] t2 + P’(0) t + P(0)

Or, rearranging the terms, we get,

P(t) = [(2 t3 – 3 t2 + 1)] P(0) + [(-2 t3 + 3 t2)] P(1) + [(t3 – 2 t2 + t)] P’(0) + [(t3 – t2)] P’(1)

In matrix form the equation can be written as,

2 -2 1 1 P(0)
P(t) = [t3 t2 t 1] -3 3 -2 -1 P(1)

0 0 1 0 P’(0) (4.15)
1 0 0 0 P’(1)

The equation in short form can be written as: P(t) = [t] [M]H [G]

Where, the terms [t], [M]H, and [G] correspond to the terms on the right hand side of the
equation (4.15). [M]H is called Hermite matrix of a cubic spline, and represents the
constant matrix. The term [G] is called geometric coefficient matrix. Let us consider an
example to understand how the equation (4.15) works.

Example 5: A parametric cubic curve passes through the points (0,0), (2,4), (4,3), (5, -2)
which are parametrized at t = 0, ¼, ¾, and 1, respectively. Determine the geometric
coefficient matrix and the slope of the curve when t = 0.5.

Solution: The points on the curve are

(0,0) at t = 0
(2,4) at t = ¼

ME 165 Handbook on Computer Aided Design by R. B. Agarwal 4-14

Chapter 4 - Curves

(4,3) at t = ¾
(5,-2) at t = 1

Substituting in equation (4.15), we get,

0 0 0 0 0 1 2 -2 1 1 P(0)
2 4 0.0156 0.0625 0.25 1 -3 3 -2 -1 P(1)
4 3 = 0.4218 0.5625 0.75 1 0 0 1 0 P’(0)
5 -2 1 1 1 1 1 0 0 0 P’(1)

Solving, we get,

P(0) 0 0
P(1) 5 -2
P’(0) = 10.33 22
P’(1) 4.99 -26

The slope at t = 0.5 is found by taking the first derivative of the equation (4.15), as follows,

 2 -2 1 1 0 0
 -3 3 -2 -1 5 -2

P’(t) = [3t3 2t 1 0] 0 0 1 0 10.33 22
1 0 0 0 4.99 -26

Therefore,

P’(0.5) = [3.67 -2.0], or

Slope = ∆x/∆y = -2.0/3.67 = - 0.545

Note: coinciding the end points, and imposing equal values of the slopes, as shown, can create
closed shape of a cubic spline.

ME 165 Handbook on Computer Aided Design by R. B. Agarwal 4-15

Chapter 4 - Curves

4.6 Approximated Synthetic Curves

In the previous sections, we have studied the analytical and interpolated curves, now we will
focus on the approximated curves. Bezier and B-spline curves represent the approximated
curves, these curves are synthetic, and can be joined together to form a very smooth curve. For
data fitting, interpolated curves work best, whereas, for free form geometry, interpolation cannot
be used, and approximation becomes necessary. In many engineering applications, smoothness
of a curve is preferred over the quality of interpolation. These curves are flexible, local changes
in the shape do not affect the entire shape of the curve. Let us study the Bezier curve first,
followed by the B-spline.

4.6.1 Bezier Curves
Equation of the Bezier curve provides an approximate polynomial that passes near the given
control points and through the first and last points. In 1960s, the French engineer P. Bezier, while
working for the Renault automobile manufacturer, developed a system of curves that combine
the features of both interpolating and approximating polynomials. In this curve, the control
points influence the path of the curve and the first two and last two control points define lines
which are tangent to the beginning and the end of the curve. Several curves can be combined and
blended together. In engineering, only the quadratic, cubic and quartic curves are frequently
used.

4.6.2 Bezier’s Polynomial Equation
The curve is defined by the equation

P(t) = ∑ Vi Bi,n (t) where, 0 ≤ t ≤ 1 and i = 0, 1, 2, …, n (4.16)

Here, Vi represents the n+1 control points, and Bi,n (t) is the blending function for the Bezier
representation and is given as

 n
 Bi,n (t) = i (ti) (1-t)n-i (4.17)

Where n is the degree of the polynomial and

 n n!
 i = i = 0, 1, 2, …….,n

i! (n-i)!

These blending functions satisfy the following equations

ME 165 Handbook on Computer Aided Design by R. B. Agarwal 4-16

Ajay yadiki

Chapter 4 - Curves

Bi,n (t) > 0 for all i

 ∑ Bi,n (t) = 1 (4.18)

The equations (4.18) force the curve to lie entirely within the convex figure (or envelop) set by
the extreme points of the polygon formed by the control points. The envelope represents the
figure created by stretching a rubber band around all the control points.

The figure below shows that the first two points and the last two points form lines that are
tangent to the curve. Also, as we move point v1, the curve changes shape, such that the tangent
lines always remain tangent to the curve.

v1
v2 v1’

v0 v3

Relationship between end-points and curve slope

Bezier’s blending function produces an nth degree polynomial for n+1 control points and forces
the Bezier curve to interpolate the first and last control points. The intermediate control points
pull the curve toward them, and can be used to adjust the curve to the desired shape.

ME 165 Handbook on Computer Aided Design by R. B. Agarwal 4-17

Chapter 4 - Curves

4.6.3 Third Order Bezier Polynomial
We will simplify the Bezier’s equation for n = 3 (a cubic curve). The procedure developed here
can be extended to the other values of n.

For n = 3, we will have four control points, namely, V0, V1, V2, V3. i will vary from 0 to 3. The
Bezier’s equation,

P(t) = ∑ Vi Bi,3 (t) can be expanded to give, (4.19)

P(t) = V0 B0,3 + V1 B1,3 + V2 B2,3 + V3 B3,3 and

 3!
B0,3 = -------------- t0 (1-t)3 = (1-t)3

 0! 3!

 3!
B1,3 = -------------- t1 (1-t)2 = 3t (1-t)2

 1! 2!

 3!
B2,3 = -------------- t2 (1-t)1 = 3t2 (1-t)

 2! 1!

 3!
B3,3 = -------------- t3 (1-t)0 = t3

 3! 0!

By substituting the above values in the equation (4.19) we get

P(t) = (1-t)3 V0 +3t (1-t)2 V1 + 3t2 (1-t) V2 + t3 V3

In matrix form this equation is written as

-1 3 -3 1 V0
P(t) = [t3 t2 t 1] 3 -6 3 0 V1 (4.20)

-3 3 0 0 V2
1 0 0 0 V3

ME 165 Handbook on Computer Aided Design by R. B. Agarwal 4-18

Chapter 4 - Curves

4.6.4 Blending Two or More Bezier Curves
Two or more Bezier curves can be blended to provide a desired curve of a complex nature. When
joining curves, slope continuity is maintained by having three collinear points, the middle one
being common to the adjoining curves, as shown.

Point V3 is the middle point of the common points V2,, V3,, and V4 of curves A and B.

NOTE: Using the Bezier curves, we can create closed curves by making the first and last points
of the control points coincide.

Example: A cubic Bezier curve is described by the four control points: (0,0), (2,1), (5,2), (6,1).
Find the tangent to the curve at t = 0.5.

Solution: We will use the Bezier cubic polynomial, given in equation (4.20), which is,

-1 3 -3 1 V0
P(t) = [t3 t2 t 1] 3 -6 3 0 V1

-3 3 0 0 V2
1 0 0 0 V3

ME 165 Handbook on Computer Aided Design by R. B. Agarwal 4-19

Chapter 4 - Curves

where, V0 = (0,0)
V1 = (2,1)
V2 = (5,2)
V3 = (6,1)

The tangent is given by the derivative of the general equation above,

-1 3 -3 1 V0
P’(t) = [3t2 2t 1 0] 3 -6 3 0 V1 (4.21)

-3 3 0 0 V2
1 0 0 0 V3

At t = 0.5, we get,

-1 3 -3 1 V0
P’(t) = [3(.5)2 2(.5) 1 0] 3 -6 3 0 V1

-3 3 0 0 V2
1 0 0 0 V3

 = [6.75 1.5 0 1]

ME 165 Handbook on Computer Aided Design by R. B. Agarwal 4-20

4.6.5 B-Spline Curve
B-spline curves use a blending function, which generates a smooth, single parametric polynomial
curve through any number of points. To generate a Bezier curve of the same quality of
smoothness, we will have to use several pieces of Bezier curves. Unlike the Bezier curve, the
degree of the polynomial can be selected independently of the number of control points. The
degree of the blending function controls the degree of the resulting B-spline curve. The curve has
good local control, i.e., if one vertex is moved, only some curve segments are affected, and the
rest of the curve remains unchanged.

Chapter 4 - Curves

P(t) = Σ Ni,k (t) Vi (4.22)

Where, P(t) is a point on the curve.

i indicates the position of control point i
k is order of curve

 Ni,k (t) are blending functions
 Vi are control points

The matrix form of the uniform cubic B-spline curve is:

-1 3 -3 1 Vi-1
 3 -6 3 0 Vi (4.23) Pi(t) = 1/6[t3 t2 t 1] -3 0 3 0 Vi+1

 1 4 1 0 Vi+2

ME 165 Handbook on Computer Aided Design by R. B. Agarwal 4-21

The mathematical derivation of the B-spline curve is complex and beyond the scope of this
course. The equation is of the form:

Chapter 5 - Surfaces

CHAPTER 5

SURFACES

5.1 Introduction

Wire frame models are unable to represent complex surfaces of objects like car, ship,
airplane wing, castings etc. A surface model can be used to represent the surface profile
of these objects. Also, surface model can be used for calculating mass properties,
interference between parts, generating cross-sectioned views, generating finite element
mesh, and generating NC tool paths for continuous path machining. Additionally, surface
model can be used to fit experimental data, discretized solutions of differential equations,
construction of pressure surface, construction of stress distribution etc.

Surface creation on a CAD system usually requires wire frame entities: lines, curves,
points, etc. All analytical and synthetic curves can be used to generate surfaces.
In order to visualize surfaces on a graphic display, a mesh, say m x n in size is usually
displayed; the mesh size is controlled by the user. Most CAD systems provide options to
set the mesh size.

A surface of an object is more complete and less ambiguous representation than its wire
frame model; it is an extension of a wire frame model with additional information.
A wire frame model can be extracted from a surface model by deleting all surface entities
(not the wireframe entities – point, lines, or curves!). Databases of surface models are
centralized and associative, manipulation of surface entities in one view is automatically
reflected in the other views. Surface models can be shaded and represented with hidden
lines.

Chapter 5 - Surfaces

5.2 Types of Surfaces

5.2.1 Plane Surface
This is the simplest surface, requires 3 non-coincidental points to define an infinite plane.
The plane surface can be used to generate cross sectional views by intersecting a surface
or solid model with it.

5.2.2 Ruled (lofted) Surface
This is a linear surface. It interpolates linearly between two boundary curves that define
the surface. Boundary curves can be any wire frame entity. The surface is ideal to
represent surfaces that do not have any twists or kinks.

Boundary Curve

5.2.3 Surface of Revolution
This is an axisymmetric surface that can model axisymmetric objects. It is generated by
rotating a planar wire frame entity in space about the axis of symmetry of a given angle.

Curve axis of
symmetry

Handbook on Computer Aided Design by R. B. Agarwal 5-2

Chapter 5 - Surfaces

5.2.4 Tabulated Surface
This is a surface generated by translating a planar curve a given distance along a
specified direction. The plane of the curve is perpendicular to the axis of the generated
cylinder.

Cylindrical Surface

Curve

5.2.5 Bi-linear Surface
This 3-D surface is generated by interpolation of 4 endpoints. Bi-linear surfaces are very
useful in finite element analysis. A mechanical structure is discretized into elements,
which are generated by interpolating 4 node points to form a 2-D solid element.

P2 P3

 P1 P4

5.2.6 Coons Patch
Coons patch or surface is generated by the interpolation of 4 edge curves as shown.

 Edge 2

Edge1 Edge 3

Edge 4

Handbook on Computer Aided Design by R. B. Agarwal 5-3

Chapter 5 - Surfaces

5.2.7 Bezier Surface
This is a synthetic surface similar to the Bezier curve and is obtained by transformation
of a Bezier curve. It permits twists and kinks in the surface. The surface does not pass
through all the data points.

5.2.8 B-Spline Surface
This is a synthetic surface and does not pass through all data points. The surface is
capable of giving very smooth contours, and can be reshaped with local controls.

Mathematical derivation of the B-spline surface is beyond the scope of this course. Only
limited mathematical consideration will be given here.

Computer generated surfaces play a very important part in manufacturing of engineering
products. A surface generated by a CAD program provides a very accurate and smooth
surface, which can be generated by NC machines without any room for misinterpretation.
Therefore, in manufacturing, computer generated surfaces are preferred. Since surfaces
are mathematical models, we can quickly find the centroid, surface area, etc. Another
advantage of CAD surfaces is that they can be easily modified.

Handbook on Computer Aided Design by R. B. Agarwal 5-4

Bezier Surface

Chapter 5 - Surfaces

5.3 Interpolated Surfaces – Bilinear Surface
A bilinear surface is obtained by linear interpolation between four points, which may or
may not lie in the same plane. The four points appear as vertices or corner points and the
parameter values u and v create lines at various intervals to provide the surface visibility,
shown in the figure. The parameters u and v are defined as

0 ≤ u ≤ 1, and 0 ≤ v ≤ 1
P (1,1) P (1,0)

P(0,0)
P(1,0)
P(0,1)
P(1,1)

u
Bilinear Patch

P (0,1)
v

P (0,0)

The interpolated parametric equation of a bilinear surface is given as:

P (u,v) = (1-u) (1-v) P(0,0) + u (1-v) P(1,0) + (1-u) P(0,1) + u v P(1,1)

In matrix form, it can be written as

P(u,v) = [(1-u)(1-v) u(1-v) (1-u)v uv]

 Node points in FEA

Application of Bilinear Surfaces
Bilinear patches are extensively used in 2-D finite element analysis (FEA). In FEA, an
engineering structure is defined by several bilinear surfaces (elements), which are created
by joining points on the structure’s geometry, called nodes. The nodes are connected to
other nodes to create quadrilateral surfaces. Points not lying on the nodes are calculated
by interpolation. Thus, the entire structure is completely defined by the nodes and the
bilinear surfaces.

Drawbacks of Bilinear Surfaces
Bilinear surfaces have a very limited use, mainly, for FEA. Since only 4 points can be
used in the interpolation, the smoothness of the generated surface is limited. Additionally,
there is no flexibility to control shapes of the surface, unlike the sweeped surfaces.

Handbook on Computer Aided Design by R. B. Agarwal 5-5

Chapter 5 - Surfaces

5.4 Interpolated Surfaces – Coons Patch

A linear interpolation between four bounded curves is used to generate a Coons surface,
also called as Coons patch. The method is credited to S. Coons who developed this
concept for generating a surface.

Linear interpolation between the boundary curves P(0,v), P(u,0), P(1,v) , and P(u,1) gives
the equation

Q(u,v) = (1-v) P(u,0) + u P(1,v) + v P(u,1) + (1-u) P(0,v)

P(1,v)
 P (1,1)

P (1,0)

P(u,1)
u

P(u,0) Coons Patch

 P (0,1)
v P (0,0)

 P(0,v)

The above equation gives wrong values at the corners (u,v = 0 and 1). For example,
substituting the values of u and v we get,

Q(0,0) = P(0,0) + P(0,0) = 2P(0,0)
Q(1,0) = 2P(1,0), etc.

Which are obviously wrong values. Therefore, The coons patch is created by
modification of the interpolation equation, where the corners are subtracted. The
modified interpolation equation is given as,

P(u,v) = (1-v) P(u,0) + u P(1,v) – v P(u,1) + (1-u) P(0,v) –
(1-u) (1-v) P(0,0) – u (1-v) x P(1,0) - (1-u) v P(0,1) – u v P(1,1).

For computational purposes, it is more convenient to write this equation as,

Handbook on Computer Aided Design by R. B. Agarwal 5-6

Chapter 5 - Surfaces

-P(0,0)
-P(1,0)
 P(u,0)

P(u,v) = [(1 – v) u v (1 – u)] Eqns. of the boundary curves

- [(1 – u)(1 –v) u(1 – v) (1 – u)v u

Which gives,

Q(u,v) = [(1 – u) u 1]

Other interpolated surfaces include the Param

Applications
Coons surface is easy to create, and therefore
generating models. However, it has only a li
inflexible and cannot create very smooth sur
smooth automobile fender using the Coons s
AutoCAD, use this surface for generating su

Handbook on Computer Aided Design by R. B. Agar
P(u,0)
P(1,v)
P(u,1)
P(0,v)

P(0,0)
P(1,0) End-points (coordinates)

v] P(0,1)
P(1,1)
-P(0,1)
-P(1,1)
 P(u,1)
etric

, man
mited
faces.
urface
rfaces

wal
P(0,v)
P(1,v)
 0
 Cubic patche

y 2-D CAD
 application s
 It would be v
. Several CA
 between 4-b
(1 -v)
 v
 1
s.

packages utilize it for
ince the surface is
ery difficult to produce a
D software, including
ounded edges.

5-7

Chapter 5 - Surfaces

5.5 Linearly Swept Surfaces
A swept surface is generated when a curve is parametrically translated or rotated. In
CAD, a surface is represented by a series of curves, which are parametrically generated
at various instances. For example, a cylindrical surface is generated when a circular arc is
translated up to the given dimension using a parameter t, where t varies as, 0 ≤ t ≤1.

In the figure shown, the cylindrical surface is generated when a circular arc is translated a
distance L, with the interim instances at t = 0.1, 0.2, 0.3, … 1. Here, the parameter t is
given 10 values, and therefore, the surface of the cylinder is represented by 10 circular
curves. The appearance of the surface improves as the parameter t varies at smaller
intervals. Thus, if t is varied with ∆t = 0.01, there will be 100 circular curves representing
the surface.

L

t = 0 t = 1

L

A surface is an extension of a curve. The parametric representation of a curve is given by
a single-vector equation of the form:

P(t) = [x(t) y(t) z(t)]

Here, only one parametric variable or one degree of freedom is needed. Whereas, a
surface representation requires two parametric variables, and the equation is given as:

Q(s,t) = [x(s,t) y(s,t) z(s,t)]

Tracing a point in the s and t directions, as shown in the figure on the next page,
generates a surface. One parameter variable is kept constant while varying the other one.
A series of curves is created along the s and t directions. For example, constraining the
parameters s and t between zero and 1, the set of curves generated along the s direction is,

P(0,t), P(0.1,t), P(0.2, t)………….P(1, t)

and the other set of curves along the t direction is,

Handbook on Computer Aided Design by R. B. Agarwal 5-8

Chapter 5 - Surfaces

 P(s,0), P(s,0.1),…P(S, 0.9), P(s,1).

P (s,1)

P(0,t)

t P (1,t)

 s
 P (s,0)

Thus, creation of a surface requires creation of the multiple curves that constitute it. This
concept can be applied to both, the surface that has an analytical formulation (conic
sections) and to a free-form surface (Bezier, B-spline).

Handbook on Computer Aided Design by R. B. Agarwal 5-9

Chapter 5 - Surfaces

5.6 Revolved Surfaces (Circular Sweep)

Surface of revolution is obtained by rotating a
plane-curve around an axis. In the figure shown,
line AB is rotated about the z-axis through an

y

x

z

angle of 2π radians, generating a
of surfaces, based on the conditio
parameters t and θ. Here, t descri
rotation. In general, a point on lin
and, when rotated by θ radians, it

In general, the point matrix gives
around the z-axis,

P(t, θ) = [x(t) cosθ x(t) sinθ z(t

In matrix form the equation can b

Handbook on Computer Aided Design
A

cylinder. A line o
n of rotation. An
bes the entity to b
e AB (lying in th
 becomes [x(t)co

 a point on the su

)]

e written as,

by R. B. Agarwal
B

r curve when revolved can generate all kinds
y point on the surface is a function of two
e rotated and θ represents the angle of
e xz-plane) is represented by [x(t), 0, z(t)]
sθ, x(t)sinθ, z(t)].

rface of revolution obtained by rotation

x

X sin θ

θ

x cos θ

5-10

Chapter 5 - Surfaces

cosθ sinθ 0 0
0 1 0 0

P (t, θ) = [x(t) 0 z(t) 1] 0 0 1 0
0 0 0 1

Note: The above rotation matrix is equivalent to the rotational transformation matrix
studied earlier, which is,

 cosθ sinθ 0 0 cosθ sinθ 0 0
0 1 0 0 - sinθ cosθ 0 0

 0 0 1 0 = 0 0 1 0
 0 0 0 1 0 0 0 1

Thus, the generated surface is a rotational transformation of a line (or curve), except θ is
not constant, but has values, 0 ≤ θ ≤ 2π.

Example

Generate the conical surface obtained by rotation of the line segment AB around the z-
axis with,

A = (1,0,1) and B = (7,0,7).

Solution

Line AB can be represented in parametric form as:

P (t) = [x(t) y(t) z(t)], and the parametric equation of a line is,

P (t) = A + (B-A) t

based on this equation, the coordinates of a of point on the line are given as,

x(t) = 1 + (7-1) t = 1+ 6t,
y(t) = 0

Handbook on Computer Aided Design by R. B. Agarwal 5-11

Chapter 5 - Surfaces

z(t) = 1 + (7-1) t = 1 + 6t

The equation of the surface as given above is,

P(t, θ) = [x(t) cosθ x(t)sinθ z(t)] or

= [(1+6t) cosθ (1+6t) sinθ (1+6t)] - equation of the surface

Any point on the surface can be located by substituting t and θ values in the above
equation, e.g.: at t = 0.4 and θ = π/2 radians

P(0.4, π/2) = [1+6(.4)cos (π/2) 1+ 6(.4) sin (π/2) 1 + 6(.4)]

= [0 3.4 3.4], which is the point on the surface at (.4, π/2)

Example

Generate a Torus by rotating a circle of radius r and the center at (a,0,0) about the z-axis.

Solution

Rotating a circle contained in the x z plane around the z-axis can generate a torus. The
center of the circle has coordinates (a,0,0) and equation of the circle in parametric form is
given as;

P (φ) = [(a + r cosφ, 0, r sinφ]

The torus is represented by,

Q(φ, θ) = {[(a + r cosφ) cosθ], [(a + rcosφ) sinθ], rsinφ} – equation of the torus

In this case, the parameters are φ and θ.

Handbook on Computer Aided Design by R. B. Agarwal 5-12

Chapter 5 - Surfaces

5.7 Circular Sweep of a Synthetic Curve

Equation of a synthetic curve (free-form curve), as derived earlier, is given as,

P (t) = [t] [M] [V]

The surface of revolution is then given by,

 Q (t, θ) = [t] [M] [V] [Tr] θ = [Q(t)][Tr] θ

Where, Q(t, θ) is the equation of the curve, and [Tr] θ is the rotation matrix about the z-
axis.

Note: To rotate the curve about the axis, we will have to use the translation and rotation
matrices.

Example:

A cubic Bezier curve is defined by the control points: P1 (1,0,2), P2 (3,0,4), P3 (2,0,6),
P4 (5,0,7). Find the surface of revolution obtained by revolving the curve about the z-axis
and calculate the point on the surface at t = 0.5, θ = π/4 rad.

Solution

The cubic Bezier curve is given by the equation,

P (t) = [t][m][v]
-1 3 -3 1 v0
3 -6 3 0 v1

 = [t3 t2 t 1] -3 3 0 0 v2
1 0 0 0 v3

Substituting the coordinates of the points, we get

-1 3 -3 1 1 0 2 1
3 -6 3 0 3 0 4 1

P (t) = [t3 t2 t 1] -3 3 0 0 2 0 6 1
1 0 0 0 5 0 7 1

Handbook on Computer Aided Design by R. B. Agarwal 5-13

Chapter 5 - Surfaces

The surface of revolution is:

 -1 3 -3 1 1 0 2 1 cosθ sinθ 0 0
3 -6 3 0 3 0 4 1 0 0 0 0

Q (t, θ) = [t3 t2 t 1] -3 3 0 0 2 0 6 1 0 0 1 0 0 ≤ θ ≤ 2πn
1 0 0 0 5 0 7 1 0 0 0 1

0 ≤ n ≤ 1

For t = 0.5 and θ = π/4, the surface equation is,

 -1 3 -3 1 1 0 2 1 cos(π/4) sin(π/4) 0 0
 3 -6 3 0 3 0 4 1 0 0 0 0

Q (t, θ) = [(.5)3 (.5)2 (.5) 1] -3 3 0 0 2 0 6 1 0 0 1 0
 1 0 0 0 5 0 7 1 0 0 0 1

= [1.86 1.86 4.86 1]

Handbook on Computer Aided Design by R. B. Agarwal 5-14

Chapter 5 - Surfaces

5.8 Creating a Surface by Parametric Sweeping

In the examples given above, sweeping a curve parametrically generated the surfaces. In
parametric sweeping procedure, a surface is generated through the movement of a line or
a curve along or around a defined path. The curve is sweeped as the sweep parameter is
varied from the values of 0 to 1, creating several instances of the curve along the sweep
path. In general, the equation of the surface can be given as,

Q (t, s) = P (t) T (s)

Where, P (t) is the parametric equation of a curve and T(s) is the sweep transformation
based on the shape of the path. The sweep transformation can consist of translation,
scaling, rotation or a combined transformation. If the path is a straight line, the points
along the path on the line can be represented by,

x(s) = as
y(s) = bs
z(s) = cs

and T (s) is given as,

1 0 0 0
0 1 0 0

T(s) = 0 0 1 0
 as bs cs 1

Where, a, b, c are coordinate values, and 0 ≤ s ≤ 1

This is equivalent to a three-dimensional translation of a curve with several traces
generated along the path, controlled by how the parameter s is varied.

Example
Consider the Bezier curve defined by the control points P1 = (0,5,0), P2 = (3,4,0), P3 =
(2,0,0), and P4 = (5,0,0). Translate the curve five units along the z-axis to generate a
swept surface.

Solution
Q (t,s) = [P(t)] [Tt], substituting the numbers, we get,

 -1 3 -3 1 0 5 0 1 1 0 0 0
3 -6 3 0 3 4 0 1 0 1 0 0

Q (t, s) = [t3 t2 t 1] -3 3 0 0 2 0 0 1 0 0 1 0
1 0 0 0 5 0 0 1 0 0 5s 1

Substituting the value of s and solving the matrices can calculate any point on the surface.

Handbook on Computer Aided Design by R. B. Agarwal 5-15

Chapter 5 - Surfaces

5.9 Creating a Surface by Sweeping a polygon
Any polygon can be swept around a given path to generate a surface. The equation of

the surface is given as,

Q(s, t) = [P]{T(s)]

Where, [P] is the point matrix, and T(s) is the transformation matrix.

Example:

 Sweep (rotate) the triangle A(2,2), B(5,7), C(-2,-5) around x-axis and generate the
surface

solution:

Q(s,t) = [P] [T(s)]

2 2 0 1 1 0 0 0
 = 5 7 0 1 0 cos2πn sin2πn 0

-2 -5 0 1 0 - sin2πn cos2πn 0
0 0 0 1

Note: The value of n locates various positions on the swept surface.

Handbook on Computer Aided Design by R. B. Agarwal 5-16

Chapter 5 - Surfaces

5.10 Creating a Parametric Cubic Patch

Parametric cubic patch or surface is generated by four boundary curves; the curves are
parametric cubic polynomials. The equation of a parametric cubic curve was defined
earlier as:

2 -2 1 1 P(0)
-3 3 -2 -1 P(1)

= [t3 t2 t 1] 0 0 1 0 P’(0)
1 0 0 0 P’(1)

Constant matrix for n = 3 geometry matrix

Where P(0) = Coordinates of the first point at t = 0
P(1) = coordinates of the last point at t = 1
P’(0) = values of the slopes in x, y, z directions at t = 0
P’(1) = values of the slopes in x, y, z directions at t = 1

Analogous to a cubic curve, a parametric cubic surface can be defined by 16 points:

- 4 points for coordinates of the corner points
- 8 points for slopes in the s & t directions
- 4 points for twist vectors (second derivatives)

Using a procedure similar to the one carried out in the derivation of the cubic curve, we
can derive the geometric coefficient matrix for the surface, which is given as,

P(0,0) P(0,1) Pt(0,0) Pt(0,1)
 P(1,0) P(1,1) Pt(1,0) Pt(1,1)

[G]H = Ps(0,0) Ps(0,1) Pst (0,0) Pst(0,1)
 Ps(1,0) Ps(1,1) Pst(1,0) Pst (1,1)

Which can be broken into 4 groups as,

 Position of corner points, Derivatives w.r.t. t of corner points

Derivatives w.r.t s at corner points, Cross derivatives at corner points

Handbook on Computer Aided Design by R. B. Agarwal 5-17

Chapter 5 - Surfaces

Twist vectors, not shown here, are the partial derivatives: dPs/dt & dPt/ds. These vectors
control the internal shape of the surface.

With the geometric coefficient matrix defined, the equation of the surface can be written
as,

P(s.t) = [s] [M]H [G]H [MH]T [t]T

 Where: [s] = [s3 s2 s 1]
[M]H = [Constant matrix for n = 3]
[MH]T = Transpose of [M]H
[G]H = Geometry matrix as defined by the 16 points, and

t3

[t]T = t2
 t
 1

Example:

Given: A parametric cubic surface is defined by its Cartesian components as follows:

3 0 1 1 t3

1 0 0 1 t2

x(s,t) = [s3 s2 s 1] 2 1 1 1 t
0 2 -1 0 1

1 1 1 1 t3

1 0 0 0 t2

y(s,t) = [s3 s2 s 1] 2 3 0 0 t
1 2 0 2 1

0 1 2 3 t3

1 0 2 0 t2

z(s,t) = [s3 s2 s 1] 3 1 2 1 t
1 0 1 1 1

Handbook on Computer Aided Design by R. B. Agarwal 5-18

Chapter 5 - Surfaces

Obtain the normal vector at the point where s = ½, t = ½

Solution:

P(s,t) = [S] [M]H [G]H [MH]T [t]T = [x(s,t), y(s,t), z(s,t)]

X(s,t) = [s] [A]x [t]T

Where [A]x = [M]H [G]H [MH]T

The normal vector n is given by

n = Psx Pt

where Ps = ∂P/ds & Pt = ∂P/dt

3 0 1 1 t3

1 0 0 1 t2

x(s,t) = [s3 s2 s 1] 2 1 1 1 t
0 2 -1 0 1

3 0 1 1 t3

1 0 0 1 t2

 xs(s,t) = [3s2 2s 1 0] 2 1 1 1 t
0 2 -1 0 1

3 0 1 1 3t2

1 0 0 1 2t
 xt(s,t) = [s3 s2 s 1] 2 1 1 1 1

0 2 -1 0 0

at s = 0.5 & t = 0.5

Handbook on Computer Aided Design by R. B. Agarwal 5-19

Chapter 5 - Surfaces

 xs(s,t) = 4.5313

 xt(s,t) = 3.3438

similarly, we can evaluate ys(s,t), yt(s,t), zs(s,t) and zt(s,t)

 ys (s,t) = 2.5313

yt (s,t) = 5.5313

zs (s,t) = 6.9375

zt (s,t) = 5.4375

And, Ps(s,t) = [4.5313, 2.5313, 6.9375]
 Pt(s,t) = [3.3438, 5.5313, 5.4375]

i j k
n = Ps(0.5,0.5) x Pt(0.5,0.5) = 4.5313 2.5313 6.9375

3.3438 5.5313 5.4375

= -24.61 i - 1.4413j + 16.59 k

Handbook on Computer Aided Design by R. B. Agarwal 5-20

Example for cubic patch.

Chapter 5 - Surfaces

5.11 Bezier Surface

Just as parametric cubic curves are extended to parametric cubic patches, Bezier curves
may be extended to Bezier surface patch. While the surface passes through the four
corner points, the control points control all other points on the surface.
Using the placement of these points to specify edge slope is more intuitive than
determining the parametric slopes and twist vectors for the parametric cubic curve
surface.
Bezier surface, as a result, is easier to use because the control points themselves
approximate the location of the desired surface. Bezier surfaces can be generated with
any order of the Bezier curve. Two surface patches can be joined and the two surfaces do
not have to be of the same order, one can be cubic and the other a quadratic.
Blending Bezier patches with slope continuity requires that (1) control points on the
common edges be shared and (2) three control points – one on the edge and ones on the
either sides of the edge – form a straight line, as shown in the figure below.

v

u

BEZIER SURFACES

P14

P24

P44

P34

P21 P31

P54

P41
P51 P61

P71

P72

P64

P73

P74
P13

P12

P43

P11

P42

z

y

x

Two blended Bezier patches. Control points P41, P42, P43 and P44 are
shared by both patches. Slope continuity between the two patches is
maintained by having each group of three control points which cross the
shared edge (P31, P41, P51, etc.) lie on straight lines.

In Bezier surface:
o The surface takes the general shape of the control points.
o The surface is contained within the convex hull of the control points.
o The corner of the surface and the corner control points are coincident.

General Equation of the Bezier surface is given as,

Q(s,t) = Σ Σ Vi,j Bi,n(s) Bj,m(t)

0 ≤ s,t ≤1

Vi,j defines the control points

Handbook on Computer Aided Design by R. B. Agarwal 5-21

Chapter 5 - Surfaces

Bi,n(s) & Bj,m(t) are the Bernstein blending functions in the s and t directions.

In matrix form, the Bezier surface can be represented by,

Q(s,t) = [S] [M]B [V]B [([M)T]B
 [t]T

For a cubic surface this equation reduces to:

-1 3 -3 1 v0,0 v0,1 v0,2 v0,3
-3 -6 3 0 v1,0 v1,1 v1,2 v1,3

Q(s,t) = [s3 s2 s 1] 3 3 0 0 v2,0 v2,1 v2,2 v2,3 x
 1 0 0 0 v3,0 v3,1 v3,2 v3,3

 1 3 -3 1 t3

 3 -6 3 0 t2

-3 3 0 0 t
 1 0 0 0 1

Note that, to represent a cubic Bezier surface, 16 control points must be specified, and
several Bezier surfaces can be combined to create a complex surface.

Handbook on Computer Aided Design by R. B. Agarwal 5-22

CHAPTER 6

SOLID modelling

6.1 Application of Solid Models
In mechanical engineering, a solid model is used for the following applications:

1. Graphics: generating drawings, surface and solid models
2. Design: Mass property calculation, interference analysis, finite element

modelling, kinematics and mechanism analysis, animation, etc.
3. Manufacturing: Tool path generation and verification, process planning,

dimension inspection, tolerance and surface finish.
4. Component Assembly: Application to robotics and flexible manufacturing:

Assembly planning, vision algorithm, kinematics and dynamics driven by solid
models.

Chapter 6 Solid modelling

6.2 Solid Model Representation
There are three different forms in which a solid model can be represented in CAD:

• Wireframe Model
• Surface Model
• Solid Model

Wireframe Models: Joining points and curves creates wireframe models. These models
can be ambiguous and unable to provide mass property calculations, hidden surface
removal, or generation of shaded images. Wireframe models are mainly used for a quick
verification of design ideas.

Surface Models: Surface models are created using points, lines, and planes. A surface
model is unable to identify points that do not lie on the surface, and therefore, the
moment of inertia, volume, or sections of the model cannot be obtained. A surface
model can be shaded for better visibility. Surface models are used for modelling surfaces
of engineering components.

Solid models: Solid models are the most preferred form of CAD models. and represent
unambiguous image of a component. A solid model can be used to analyze the moment
of inertia, mass, volume, sections of the model, etc.

Solid models are mathematical models of objects in the real world that satisfy specific
properties, listed below.

1. Bounded: The boundary must limit and contain the interior of the solid.
2. Homogeneously Three-Dimensional: No dangling edges or faces be present so

that the boundary is always in contact with the interior of the solid.
3. Finite: The solid must be finite in size.

Handbook on Computer Aided Design Computer Aided Design in Mchanical Engineering 6-2

Wireframe Model

Surface Model

Solid Model

Chapter 6 Solid modelling

6.3 Solid Model Creation Scheme
A solid model can be generated by the following schemes.

1. Constructive Solid Geometry (CSG)
2. Boundary Representation (B-Rep)
3. Sweeping

A brief description of these schemes follows.

6.3.1 Constructive Solid Geometry Scheme
This scheme is based on the principle that two primitives can be combined to produce a
new solid model. This method is also known as ‘Building Block’ method. The scheme
uses the Union, Intersection, and Subtraction techniques to create three-dimensional
models, which are based on the Boolean operation. The steps involved in generating a
solid model are:

1. Select the primitives from a library
2. Go through the scaling, dimension modification, and any other transformations.
3. Combine the primitives to create the desired solid model.

Since CSG method uses solid primitives, internal details of the object are automatically
contained in the model. The model can be sectioned to reveal internal details and can be
used for calculating mass, volume, moment of inertia, etc.

New solid models can be created from the primitives or other solid models by the
following operations:

• Union (U): Two solids are joined and the common volume of one of the
primitives is neglected in the resulting solid.

• Subtraction or Difference (-): One solid is subtracted from the other and the
resultant solid retains only the uncut portion of the solid.

• Intersection (П): When two solids are combined, the resultant solid represents
the common volume of the two solids.

The most common primitive solids found in a CAD program are:
Block, Cylinder, Cone, Sphere, Wedge, and Torus.

6.3.2 Boundary Representation (B-Rep) Scheme
This scheme is based on the concept that a physical object is bounded by a set of faces. A
solid model is created by combining faces and contains vertices, edges, loops, and bodies.
Only the boundary surfaces of the model are stored and the volumetric properties are
calculated by the Gauss Divergence theorem, which relates volume integral to surface
integrals. This scheme can model a variety of solids depending on the primitive surfaces
(planar, curved, or sculptured). There are two types of solid models in this scheme:

Handbook on Computer Aided Design Computer Aided Design in Mchanical Engineering 6-3

Chapter 6 Solid modelling

1. Polyhedral solids
2. Curved solids

1. Polyhedral Solids: Polyhedral models consist of straight edges, e.g., a non-cylindrical
surface: box, wedge, combination of two or more non-cylindrical bodies, etc. Polyhedral
solids can have blind or through holes, and two or three-dimensional faces, with no
dangling edges. A valid polyhedral abides by the Euler’s equation:

F – E + V – L = 2 (B-G)

Where,

F = Face
E = Edge
V = Vertices
L = Inner Loop
B = Bodies
G = Through holes

A simple polyhedral has no holes; each face is bounded by a single set of connected
edges (bounded by one loop of edges).

Euler’s equation for a simple polyhedral can be reduced to: F - E + V = 2

Example: For the box shown, F = 6, E = 12, and V = 8

Examples of other types of polyhedral are shown below.

 Polyhedral with two loops Polyhedral with a blind hole

2. Curved Solids: A curved solid is similar to a polyhedral object but it has curved
faces and edges. Spheres and cylinders are examples of curved solids.

 Sphere with F = 1, V = 1, E = 0 Cylinder: F = 3, E = 3, V= 2

Handbook on Computer Aided Design Computer Aided Design in Mchanical Engineering 6-4

Chapter 6 Solid modelling

Primitives: In B-rep, a model is made up of the following primitives:

• Vertex: A point in space
• Edge: A finite, no-intersecting space curve bounded by two vertices that are not

necessarily distinct.
• Face: A finite connected, non-self-intersecting, region of a closed oriented

surface, bounded by one or more loops.
• Loop: An ordered alternating sequence of vertices and edges. A loop defines a

non-self-intersecting closed space curve, which may be a boundary of a face.
• Body: Entity that has faces, edges and vertices. A minimum body is a point.

B-rep scheme is closely related to the traditional drafting method.

6.3.3 Sweeping Scheme
 Sweeping can create a solid model. The method is useful for creating 2 ½ – dimension
models. The generated models are axisymmetric and have uniform thickness (i.e.,
extruded models). There are two types of sweeps: linear and rotational. In linear sweep, a
closed 2-D sketch is extruded through the desired length, creating a homogeneous and
axisymmetric model, as shown in the figure.

 Sweep direction

 Linear sweep – Creating a box by sweeping a rectangle

In rotational sweep, a closed sketch is rotated around an axis. The generated model is
always axisymmetric.

In addition to the two sweeps described above, a model can also be created by a non-
linear sweep. In this type of sweep, a closed sketch is swept along a non-linear path.

Handbook on Computer Aided Design Computer Aided Design in Mchanical Engineering 6-5

Chapter 6 Solid modelling

6.4 Commercial Modelers
Most commercial software use the sweeping scheme. ProE and Solidworks are good
examples of software that utilize sweep technique to generate a 3-D model. In both of
these programs, a 2-D sketch is created and extruded to generate a 3-D base-model. The
base model is then used to add or modify features. Most engineering components can be
created by this technique.

Relatively new software, Ironcad utilizes the CSG technique to create 3-D models. There
are pre-build models in the library (catalog) of the software that can be retrieved and
modified as needed. The availability of the primitives (basic solid models) accelerates the
process of model generation.

All the three software mentioned above are parametric modelers. Another popular
software, AutoCAD is capable of generating 3-D models; however, this software is
basically a 2-D modeler and lacks the parametric feature. AutoCAD is capable of creating
a solid model with CSG, B-rep, and the sweep methods, but limited to only very simple
models.

Handbook on Computer Aided Design Computer Aided Design in Mchanical Engineering 6-6

Finite Elemental Analysis (FEA)

CHAPTER 1

An Overview of the Finite Element Analysis

1.1 Introduction

Finite element analysis (FEA) involves solution of engineering problems using
computers. Engineering structures that have complex geometry and loads, are either very
difficult to analyze or have no theoretical solution. However, in FEA, a structure of this
type can be easily analyzed. Commercial FEA programs, written so that a user can solve
a complex engineering problems without knowing the governing equations or the
mathematics; the user is required only to know the geometry of the structure and its
boundary conditions. FEA software provides a complete solution including deflections,
stresses, reactions, etc.

In order to become a skillful FEA user, a thorough understanding of techniques for
modelling a structure, the boundary conditions and, the limitations of the procedure, are
very crucial. Engineering structures, e.g., bridge, aircraft wing, high-rise buildings, etc.,
are examples of complex structures that are extremely difficult to analyze by classical
theory. But FEA technique facilitates an easier and a more accurate analysis. In this
technique the structure is divided into very small but finite size elements (hence the
name finite element analysis). Individual behavior of these elements is known and, based
on this knowledge; behavior of the entire structure is determined.

FEA solution of engineering problems, such as finding deflections and stresses in a
structure, requires three steps:

1. Pre-process or modelling the structure
2. Analysis
3. Post processing

A brief description of each of these steps follows.

Step1: Pre-process or modelling the structure
Using a CAD program that either comes with the FEA software or provided by another
software vendor, the structure is modeled. The final FEA model consists of several
elements that collectively represent the entire structure. The elements not only represent
segments of the structure, they also simulate it’s mechanical behavior and properties.

 Chapter 1 –An Overview of the Finite Element Analysis

Regions where geometry is complex (curves, notches, holes, etc.) require increased
number of elements to accurately represent the shape; where as, the regions with simple
geometry can be represented by coarser mesh (or fewer elements). The selection of
proper elements requires prior experience with FEA, knowledge of structure’s behavior,
available elements in the software and their characteristics, etc. The elements are joined
at the nodes, or common points.

In the pre-processor phase, along with the geometry of the structure, the constraints, loads
and mechanical properties of the structure are defined. Thus, in pre-processing, the entire
structure is completely defined by the geometric model. The structure represented by
nodes and elements is called “mesh”.

Step 2: Analysis
In this step, the geometry, constraints, mechanical properties and loads are applied to
generate matrix equations for each element, which are then assembled to generate a
global matrix equation of the structure. The form of the individual equations, as well as
the structural equation is always,

{F} = [K]{u}

Where
 {F} = External force matrix.

[K] = Global stiffness matrix
{u} = Displacement matrix

The equation is then solved for deflections. Using the deflection values, strain, stress, and
reactions are calculated. All the results are stored and can be used to create graphic plots
and charts in the post analysis.

Step 3: Post processing
This is the last step in a finite element analysis. Results obtained in step 2 are usually in
the form of raw data and difficult to interpret. In post analysis, a CAD program is utilized
to manipulate the data for generating deflected shape of the structure, creating stress
plots, animation, etc. A graphical representation of the results is very useful in
understanding behavior of the structure
.

1.2 History of FEA

Engineering applications of finite element analysis is approximately 40 years old.
Evolution of FEA is tied with the development in computer technology. With the
enhancement in computer speed and storage capacity, FEA has become a very valuable
engineering tool. NASA is credited for developing comprehensive FEA software in
1960’s, known as NASTRAN. Rights of the software were purchased by
McNeal Schwendler Corporation, who refined it and commercially marketed it under the
name, MSC-NASTRAN. The first college course in FEA was offered in 1970. In the

A Handbook on Computer Aided Design 1-2

 Chapter 1 –An Overview of the Finite Element Analysis

early 1970’s, application of FEA was limited to large corporations, who can afford
expensive mainframe computers. However, in 1980’s, with the introduction of desktop
computers, application of FEA became popular and indispensable engineering tool. In
late 80’s, almost all the major FEA vendors introduced their software that can run on a
PC.

In the past ten years, there were several significant development in FEA, including:
.
• Introduction of P- elements.
• Integration of sensitivity analysis and optimization capabilities.
• Availability of faster and cheaper desktop computers to run FEA software that

previously required mainframe computers.
• Development of powerful CAD programs for modelling complex structures.
• Making software user-friendly.

1.3 How FEA works – Within software

The following steps can summarize FEA procedure that works inside software:

Using the user’s input, the given structure is graphically divided into small
elements (sections or regions) so that each and every element’s mechanical
behavior can be defined by a set of differential equations.
The differential equations are converted into algebraic equation, and then into
matrix equations, suitable for a computer-aided solution.
The element equations are combined and a global structural equation is obtained.
Appropriate load and boundary conditions, supplied by the user, are incorporated
in to the structural matrix.
The structural matrix is solved and deflections of all the nodes are calculated.
A node can be shared by several elements and the deflection at the shared node
represents deflection of the sharing elements at the location of the node.
Deflection at any other point in the element is calculated by interpolation of all
the node points in the element.
An element can have a linear or higher order interpolation function.
The individual element matrix equations are assembled into a combined structure
equation of the form {F}=[k]{u}.

As defined earlier,

{F} = Column matrix of the externally applied loads.

[k] = Stiffness matrix of the structure, which is always a symmetric matrix.
This matrix is analogues to an equivalent spring constant of several connected
springs.

A Handbook on Computer Aided Design 1-3

 Chapter 1 –An Overview of the Finite Element Analysis

{u} = Column matrix representing the deflection of all the node points, that
results when the load {F} is applied.

1.4 How FEA works – User’s interaction

The above described software procedure is mostly transparent to the user. A user has the
following interaction with the software, through user’s computer.

Create the geometry, representing the structure: A CAD modelling software
is used to create the structure’s geometry.
Provide the material properties, loads, constraints, etc.
Analyze the result data.

1.5 Convergence – Assuring Optimum Mesh Size

How do we determine the exact number of elements for a structure and make sure that the
FEA mesh is optimum? There is no exact answer to this question; however, if we keep
refining a mesh until the variation in the result is less than a specified value, we will
reach the desirable mesh density. Convergence refers to this process, where we optimize
the mesh to arrive at the desired results. In general, there are three types of convergences:

1. Von-Mises Stress (VMS) convergence: Mesh is refined until the percentage
variation in VMS is less than 1, 5, 10 or any given value selected by the user.
VMS convergence should be avoided if there are stress concentration points,
convergence will be difficult to achieve.

2. Strain Energy Convergence: Mesh is refined until the percentage variation in
the average strain of elements is less than a chosen value. Strain convergence is a
better criterion for optimizing an FEA mesh. Stress concentrations points do not
significantly influence the average strain energy of elements and variation in
strain energy is influenced by mesh size or polynomial order of the elements only.

3. Deflection Convergence: It is similar to the above convergences, except, node
deflection values are used for the convergence criterion.

1.6 H- versus P- elements

In FEA, there are two types of elements:
1. H-elements and,
2. P-elements

H-element is the original and “classic” element. The name is derived from the field of
numerical analysis, where the letter ‘h’ is used for the step size, to achieve convergence
in the analysis. The h-element is always of low order, usually, linear or quadratic. When a
finite element mesh is refined to achieve convergence, the procedure is called h-
convergence. For h-elements, convergence is accomplished at the expense of excessively

A Handbook on Computer Aided Design 1-4

 Chapter 1 –An Overview of the Finite Element Analysis

large number of elements. The high stress concentration regions require a very fine mesh,
thereby increasing the number of elements. Finite elements used by commercial programs
in the 1970s and 80s, were all h-elements. However, with improvement in computer
power and efficiency, a much more useful, p-elements were developed.

P-elements are relatively new, developed in late 1980s and offer not only the traditional
static analysis, they provides option of optimizing a structure. P-elements can have edge-
polynomial as high as 9th order, unlike the low order polynomials of h-elements. The high
polynomial edge order of p-elements makes it possible to model a curved edge of a
structure with accuracy. Therefore, fewer elements can be used to achieve convergence.
In FEA, the number of elements in the mesh usually remains fixed; convergence is
achieved by increasing the polynomial order of the p-elements, rather than refinement of
the mesh. For optimization, as the dimensions of the structure being analyzed are
changed, the number of elements remains constant. Only, the polynomial order of the
elements is changed as needed.

1.7 Bottom-up and Top-down approach

When modelling a structure (creating an FEA model), bottom – up approach refers to
creation of model by defining the geometry of the structure with nodes and elements.
These nodes and elements represent the physical structure. When an FEA model is
created by this procedure, it is known as a bottom-up approach. This is the original
procedure for creating FEA mesh, and requires a substantial investment in time and skill.
When this method is employed, most of analyst’s time is devoted to creation of the
mesh, and only a fraction of time is spent for analysis and results interpretation.

In FEA, a top-down procedure refers to creation of FEA mesh by first building a solid
model, using a 3-D CAD program, and then dividing the model into nodes and elements.
Thus, the top-down method requires building of a geometric model of the structure and
then using it to create an FEA mesh. The advantages of the top-down approach are
obvious; we don’t have to define the geometry of individual elements in the structure,
which can be very time consuming. Obviously, a 3-D model requires high-end computer
hardware, along with familiarity with the modelling software.

1.8 Discretization or Division of a structure into small elements

In FEA, an engineering structure is divided into small elements. These elements coincide
with the geometry of the structure and represent the geometry and the mechanical
properties in the regions.

Selection of elements to represent the structure is a matter of engineering judgement and
prior experience with FEA procedure. A sound advice for beginners is: keep the elements
size small enough to yield good results and yet large enough to reduce computational
time. Smaller elements are desirable where the results are changing rapidly (change in

A Handbook on Computer Aided Design 1-5

 Chapter 1 –An Overview of the Finite Element Analysis

geometry, sharp corners, etc.). Large elements can be used where the results (deflection
or stresses) are relatively constant.

In FEA, discretization of a structural model is another name for mesh generation. Most of
the commercial FEA programs have the capability of automatically generating FEA
mesh. User has to provide the element type, mechanical properties, constraints and loads.

1.9 Element types

Let us assume that we wish to find stress concentration in a steel plate with holes. For the
FEA analysis of this plate, we would need elements that have shapes of triangular plates,
quadrilateral plates, and plates with curved edge. Then these elements can replace and
represent each and every part of the plate, including the circular edges near the hole.

Plate with a hole

Thus, we need elements that have geometric shape similar to the real structure or region
of the structure that is being modeled. One geometric shape cannot represent all possible
engineering structural shapes. Therefore, we need elements that look like a plate, beam,
cylinder, sphere, etc. However, in FEA, almost all structures can be approximated by the
following basic elements:

1. Line elements: Element consisting of two nodes.

Example: Truss and beam elements.

In computers, a line, connecting two nodes at its ends as shown, represents a line
element. The cross-sectional area is assumed constant throughout the element.

k

 i j

j
i

A Handbook on Computer Aided Design 1-6

 Chapter 1 –An Overview of the Finite Element Analysis

The element can have more than two nodes, and can be a curved rather than a straight
line.

2. 2-D solid elements: Elements that have geometry similar to a flat plate.

Example: Plane stress, plain strain, plates, shells, and axisymmetric elements.

2-D solid elements are plane elements, with constant thickness, and have either a
triangular or quadrilateral shape, with 3 nodes or 4 nodes as shown.

k l k

i j
i j

 2-D Solid: Triangular 2-D Solid: Quadrilateral

 For higher order 2-D elements, the number of nodes can vary. For example, the element
edges can be quadratic with 3 nodes on each edge. However, in most FEA analysis, only
the straightedge elements are used.

Loads on 2-D solid elements can be applied only in its plane, and deflections also occur
only in the plane of the elements.

Axisymmetric element is a special case of 2-D plane stress element. We will discuss this
element in detail later on.

A Handbook on Computer Aided Design 1-7

 Chapter 1 –An Overview of the Finite Element Analysis

3. 3-D solid elements: Element that have a 3-D geometry.

Example: Tetrahedron and hexahedron elements.

The basic 3-D solid elements have either a tetrahedral (4 faces) or hexahedral (6 faces)
shape, as shown.

Tetrahedral - 4-nodes Hexahedral - 8-nodes

The basic elements have corner nodes and straight edges, but the number of nodes and
edge geometry can vary.

NOTES

1 For an accurate analysis in FEA, selection of the proper elements is very important.
The selected elements must represent the engineering structure as close to the
original structure as possible.

2 In addition to these basic elements, there are some special application elements, e.g.,
mass element and contact element. Almost all other special purpose elements can be
derived from the three basic groups of the elements described above.

A Handbook on Computer Aided Design 1-8

 CHAPTER 2

The Basic FEA Procedure

2.1 Introduction

This chapter discusses the spring element, especially for the purpose of introducing
various concepts involved in use of the FEA technique. A spring element is not very
useful in the analysis of real engineering structures; however, it represents a structure in
an ideal form for an FEA analysis. Spring element doesn’t require discretization (division
into smaller elements) and follows the basic equation F = ku. We will use it solely for the
purpose of developing an understanding of FEA concepts and procedure.

2.2 Overview

Finite Element Analysis (FEA), also known as finite element method (FEM) is based on
the concept that a structure can be simulated by the mechanical behavior of a spring in
which the applied force is proportional to the displacement of the spring and the
relationship F = ku is satisfied. In FEA, structures are modeled by a CAD program and
represented by nodes and elements. The mechanical behavior of each of these elements
is similar to a mechanical spring, obeying the equation, F = ku. Generally, a structure is
divided into several hundred elements, generating a very large number of equations that
can only be solved with the help of a computer.

The term ‘finite element’ stems from the procedure in which a structure is divided into
small but finite size elements (as opposed to an infinite size, generally used in
mathematical integration). The endpoints or corner points of the element are called nodes.
Each element possesses its own geometric and elastic properties. Spring, Truss, and
Beams elements, called line elements, are usually divided into small sections with nodes
at each end. The cross-section shape doesn’t affect the behavior of a line element; only
the cross-sectional constants are relevant and used in calculations. Thus, a square or a
circular cross-section of a truss member will yield exactly the same results as long as the
cross-sectional area is the same. Plane and solid elements require more than two nodes
and can have over 8 nodes for a 3 dimensional element.

Chapter 2 – The Basic FEA Procedure

A line element has an exact theoretical solution, e.g., truss and beam elements are
governed by their respective theories of deflection and the equations of deflection can be
found in an engineering text or handbook. However, engineering structures that have
stress concentration points e.g., structures with holes and other discontinuities do not
have a theoretical solution, and the exact stress distribution can only be found by an
experimental method. However, the finite element method can provide an acceptable
solution more efficiently. Problems of this type call for use of elements other than the line
elements mentioned earlier, and the real power of the finite element is manifested. In
order to develop an understanding of the FEA procedure, we will first deal with the
spring element. In this chapter, spring structures will be used as building blocks for
developing an understanding of the finite element analysis procedure. Both spring and
truss elements give an easier modelling overview of the finite element analysis
procedure, due to the fact that each spring and truss element, regardless of length, is an
ideally sized element and do not need any further division. Therefore, in the following
sections spring structures will be used to illustrate the finite element analysis procedure.

2.3 Understanding Computer and FEA software interaction -
Using the Spring Element as an example

In the following example, a three-element structure is analyzed by finite element method.
The analysis procedure presented here will be exactly the same as that used for a complex
structural problem, except, in the following example, all calculations will be carried out
by hand so that each step of the analysis can be clearly understood. All derivations and
equations are written in a form, which can be handled by a computer, since all finite
element analyses are done on a computer. The finite element equations are derived using
Direct Equilibrium method. The example illustrates the interaction between computer and
the FEA software used for solution.

Example 2.1

Two springs are connected in series with spring constant k1, and k2 (lb./in) and a force F
(lb.) is applied. Find the deflection at nodes 2, and 3.

 k1 k2
F

 1 2 3

Figure 2.1

A Handbook on Computer Aided Design . 2-2

Chapter 2 – The Basic FEA Procedure

Solution:

For finite element analysis of this structure, the following steps are necessary:

Step 1: Derive the element equation for each spring element.

Step 2: Assemble the element equations into a common equation, knows as the global
or Master equation.

Step 3: Solve the global equation for deflection at nodes 1 through 3.

Step 1: Derive the element equation for each spring element.

First, a general equation is derived for an element e that can be used for any spring
element and expressed in terms of its own forces, spring constant and node deflections, as
illustrated in figure 2.2.

 ui uj

 fi fj

 e

Figure 2.2

Element ‘e’ can be thought of as any element in the structure with nodes i and j, forces fi
and fj, deflections ui and uj, and the spring constant ke. Node forces fi and fj are internal
forces and are generated by the deflections ui and uj at nodes i and j, respectively.

For a linear spring f = ku, and

fi = ke(uj – ui) = -ke(ui-uj) = - ke ui + ke uj

For equilibrium, fj = -fi = ke(ui-uj) = ke ui - ke uj

Or -fi = ke ui - ke uj

- fj = - ke ui + ke uj

Writing these equations in a matrix form, we get

i ie e

j je e

f uk k
f uk k

− −
= − −

A Handbook on Computer Aided Design . 2-3

Chapter 2 – The Basic FEA Procedure

The above matrix equation is a general form of an equation of a spring elements, and can
be used to derive element equations for any spring element in this example, and in
general, it is valid for any linear spring element. Thus, equations for each elements can be
written as follows:

Element 1:
k1

f1 f2
 1 2

Where, the superscript on the force matrix indicates the corresponding element.

Element 2:
k2

f2 f3
 2 3

−

−
=

−
−

2

1

11

11
)1(

2

1

u
u

kk
kk

f
f

−

−
=

−
−

3

2

22

22
)2(

3

2

u
u

kk
kk

f
f

Thus,

f1
(1) = -k1(u1 – u2) f2

(1) = k1(u1-u2)
f2

(2) = -k2(u2 – u3) f3
(2) = k2(u2-u3)

This completes the procedure for step 1.

Note that f3 = F (lb.). This will be substituted in step 2. The above equations represent
individual elements only and not the entire structure.

A Handbook on Computer Aided Design . 2-4

Chapter 2 – The Basic FEA Procedure

Step 2 : Assemble the element equations into a global equation.

The basis for combining or assembling the element equation into a global equation is the
equilibrium condition at each node. When the equilibrium condition is satisfied by
summing all forces at each node, a set of linear equations is created which links each
element force, spring constant, and deflections. In general, let the external forces at each
node be F1, F2, and F3, as shown in figure 2.3. Using the equilibrium equation, we can
find the element equations, as follows.

Node 2: ∑F = 0 = f2
(1) + f2

(2) + F2

 Or F2 = -f2
(1) – f2

(2) =
 = -k1(u1 – u2) + k2(u2 – u3)
 = -k1u1 – k1u2 + k2u2 – k2u3

Node 3: ∑F = 0 , f3

(2) + F3 = 0

 Or F3 = -f3
(2)

 = -k2 (u2 - u3)

1 1

1 1 1 1 2 1 1 1

1: 0
()

Node F f F
or F f k u u k u k u

= = +

= − = − = −
∑

2

 Figure 2.3

The superscript “e” in force fn
 (e) indicates the contribution m

e, and the subscript “n” indicates the node “n” at which force
Rewriting the equations, we get,

k1 u1 – k1 u2 = F1
- k1 u1 + k1 u2 + k2 u2 – k2 u3 = F2

 - k2 u2 + k2 u3 = F3

A Handbook on Computer Aided Design .
F1
f1
 f2
(1

ade
s ar
Node 1
F2

) f2
(2)

Node 2

 F3

f3
(2)

Node 3

 by the element number
e summed.

(2.1)

2-5

Chapter 2 – The Basic FEA Procedure

These equations can now be written in a matrix form, giving

 k1 - k1 0 u1 F1
 - k1 k1+ k2 - k2 u2 = F2
 0 - k2 k2 u3 F3

This completes step 2 for assembling the element equations into a global equation. At this
stage, some important conceptual points should be emphasized and will be discussed
below.

2.3.1 Procedure for Assembling Element stiffness matrices

The first term on the left hand side in the above equation represents the stiffness constant
for the entire structure and can be thought of as an equivalent stiffness constant, given as

k1 - k1 0 0
 [Keq] = - k1 k1+ k2 - k2 0

0 - k2 k2+ k3 - k3
0 0 -k3 k3

A single spring element with a value Keq will have an identical mechanical property as
the structural stiffness in the above example.

The assembled matrix equation represents the deflection equation of a structure without
any constraints, and cannot be solved for deflections without modifying it to incorporate
the boundary conditions. At this stage, the stiffness matrix is always symmetric with
corresponding rows and columns interchangeable.

The global equation was derived by applying equilibrium conditions at each node. In
actual finite element analysis, this procedure is skipped and a much simpler procedure is
used. The simpler procedure is based on the fact that the equilibrium condition at each
node must always be satisfied, and in doing so, it leads to an orderly placement of
individual element stiffness constant according to the node numbers of that element. The
procedure involves numbering the rows and columns of each element, according to the
node numbers of the elements, and then, placing the stiffness constant in its

A Handbook on Computer Aided Design . 2-6

Chapter 2 – The Basic FEA Procedure

corresponding position in the global stiffness matrix. Following is an illustration of this
procedure, applied to the example problem.

Element 1:
1 2 k1

K(1) = k1 -k1 1
-k1 k1 2 1 2

Element 2:
2 3 k2

K(2) = k2 -k2 2
-k2 k2 3 2 3

Assembling it according with the above-described procedure, we get,

1 2 3 4

 1 k1 -k1 0
 [Kg] = 2 -k1 k1+ k2 -k2

 3 0 -k2 k2

Note that the first constant k1 in row 1 and column 1 for element 1 occupies the row 1 and column 1
in the global matrix. Similarly, for element 2, the constant k2 in row 2 and column 2 occupies exactly
the same position (row 2 and column 2) in the global matrix, etc.

In a large model, the node numbers can occur randomly, but the assembly procedure remains the
same. It’s important to place the row and column elements from an element into the global matrix at
exactly the same position corresponding to the respective row and column.

2.3.2 Force matrix

At this stage, the force matrix is represented in a general form, with unknown forces F1,
F2, and F3

F1
F2
F3

A Handbook on Computer Aided Design . 2-7

Chapter 2 – The Basic FEA Procedure

Representing the external forces at nodes 1, 2, and 3, in general terms, and not in terms of
the actual known value of the forces. In the example problem, F1 = F2 = 0 and F3 = F. the
actual force matrix is then

0
0
F

Generally, the assembled structural matrix equation is written in short as {F}=[k]{u}, or
simply, F = k u, with the understanding that each term is an m x n matrix where m is the
number of rows and n is the number of columns.

Step 3: Solve the global equation for deflections at nodes.

There are two steps for obtaining the deflection values. In the first step, all the boundary
conditions are applied, which will result in reducing the size of the global structural
matrix. In the second step, a numerical matrix solution scheme is used to find deflection
values by using a computer. Among the most popular numerical schemes are the Gauss
elimination and the Gauss-Sedel iteration method. For further reading, refer to any
numerical analysis book on this topic. In the following examples and chapters, all the
matrix solutions will be limited to a hand calculation even though the actual matrix in a
finite element solution will always use one of the two numerical solution schemes
mentioned above.

2.3.3 Boundary conditions

In the example problem, node 1 is fixed and therefore u1 = 0. Without going into a
mathematical proof, it can be stated that this condition is effected by deleting row 1 and
column 1 of the structural matrix, thereby reducing the size of the matrix from 3 x 3 to 2 x 2.
In general, any boundary condition is satisfied by deleting the rows and columns
corresponding to the node that has zero deflection. In general, a node has six degrees of
freedom (DOF), which include three translations and three rotations in x, y and z directions.
In the example problem, there is only one degree of freedom at each node. The node deflects
only along the axis of the spring.

In this section, the finite element analysis procedure for a spring structure has been established.
The following numerical example will utilize the derivation and concepts developed above.

A Handbook on Computer Aided Design . 2-8

Chapter 2 – The Basic FEA Procedure

Example 2.2

In the given spring structure, k1 = 20 lb./in., k2 = 25 lb./in., k3 = 30 lb./in., F = 5 lb. Determine
deflection at all the nodes.

 K1 k2 P k3 F

 1 2 3 4

Figure 2.4

Solution

We would apply the three steps discussed earlier.

Step 1: Derive the Element Equations

As derived earlier, the stiffness matrix equations for an element e is,

K(e) = ke -ke
-ke ke

Therefore, stiffness matrix of elements 1, 2, and 3 are,

 1 2
Element 1: K(1) = 20 -20 1

-20 20 2

Element 2: 1 2
 K(2) = 25 -25 1

-25 25 2

A Handbook on Computer Aided Design . 2-9

Chapter 2 – The Basic FEA Procedure

Element 3:
1 2

K(3) = 30 -30 1
-30 30 2

Step 2: Assemble element equations into a global equation

Assembling the terms according to their row and column position, we get

 1 2 3 4
20 -20 0 0 1

 [Kg] = -20 20+25 -25 0 2
 0 -25 25+30 -30 3
0 0 30 30 4

 Or, by simplifying

 20 -20 0 0
 [Kg] = -20 45 -25 0

 0 -25 55 -30
 0 0 30 30

The global structural equation is,

 F1 20 -20 0 0 u1
 F2 = -20 45 -25 0 u2
 F3 0 -25 55 -30 u3
 F4 0 0 30 30 u4

Step 3: Solve for deflections

First, applying the boundary conditions u1=0, the first row and first column will drop out. Next,
F1= F2 = F3 = 0, and F4 = 5 lb. The final form of the equation becomes,

 0 45 -25 0 u2
 0 = -25 55 -30 u3
 5 0 -30 30 u4

This is the final structural matrix with all the boundary conditions being applied. Since
the size of the final matrices is small, deflections can be calculated by hand. It should be

A Handbook on Computer Aided Design . 2-10

Chapter 2 – The Basic FEA Procedure

noted that in a real structure the size of a stiffness matrix is rather large and can only be
solved with the help of a computer. Solving the above matrix equation by hand we get,

0 = 45 u2 – 25 u3
 u2 0.2500

0 = -25 u2 + 55 u3 – 30 u4 Or u3 = 0.4500
 u4 0.6167

 5 = -30 u3 + 30 u4

Example 2.3

In the spring structure shown k1 = 10 lb./in., k2 = 15 lb./in., k3 = 20 lb./in., P= 5 lb. Determine the
deflection at nodes 2 and 3.

 k1 k2 k3

 1 2 3 4

Figure 2.5

Solution:

Again apply the three steps outlined previously.

Step 1: Find the Element Stiffness Equations

Element 1:
1 2

 [K(1)] = 10 -10 1
-10 10 2

Element 2: 2 3
[K(2)] = 15 -15 2

-15 15 3

Element 3: 3 4
[K(3)] = 20 -20 3

-20 20 4

A Handbook on Computer Aided Design . 2-11

Chapter 2 – The Basic FEA Procedure

Step 2: Find the Global stiffness matrix

1 2 3 4
 1 10 -10 0 0 10 -10 0 0
 2 -10 10 + 15 -15 0 = -10 25 -15 0
 3 0 -15 15 + 20 -20 0 -15 35 -20
 4 0 0 -20 20 0 0 -20 20

Now the global structural equation can be written as,

 F1 10 -10 0 0 u1
 F2 = -10 25 -15 0 u2
 F3 0 -15 35 -20 u3
 F4 0 0 -20 20 u4

Step 3: Solve for Deflections

The known boundary conditions are: u1 = u4 = 0, F3 = P = 3lb. Thus, rows and columns 1 and 4 will drop
out, resulting in the following matrix equation,

 0 = 25 -15 u3
 3 -15 35 u3

Solving, we get u2 = 0.0692 & u3 = 0.1154

Example 2.4

In the spring structure shown, k1 = 10 N/mm, k2 = 15 N/mm, k3 = 20 N/mm, k4 = 25 N/mm, k5 = 30
N/mm, k6 = 35 N/mm. F2 = 100 N. Find the deflections in all springs.

k1

k3
k2 F2 k6 Fig. 2.6

k4

k5

1 2 3 4

A Handbook on Computer Aided Design . 2-12

Chapter 2 – The Basic FEA Procedure

Solution:

Here again, we follow the three-step approach described earlier, without specifically
mentioning at each step.

Element 1: 1 4
 [K(1)] = 10 -10 1

-10 10 4

 Element 2: 1 2
 [K(2)] = 15 -15 1

-15 15 2

Element 3: 2 3
 [K(3)] = 20 -20 2

-20 20 3

Element 4: 2 3
 [K(4)] = 25 -25 2

-25 25 3

Element 5: 2 4
 [K(5)] = 30 -30 2

-30 30 4

Element 6: 3 4
 [K(6)] = 35 -35 3

-35 35 4

The global stiffness matrix is,

1 2 3 4

10+15 -15 0 -10 1
 [Kg] = -15 15+20+25+30 -20-25 -30 2

 0 -20-25 20+25+35 -35 3
 -10 -30 -35 10+30+35 4

And simplifying, we get

 25 -15 0 -10
 [Kg] = -15 90 -45 -30

 0 -45 80 -35
 -10 -30 -35 75

A Handbook on Computer Aided Design . 2-13

Chapter 2 – The Basic FEA Procedure

And the structural equation is,

 F1 25 -15 0 -10 u1
 F2 = -15 90 -45 -30 u2
 F3 0 -45 80 -35 u3
 F4 -10 -30 -35 75 u4

Now, apply the boundary conditions, u1 = u4 = 0, F2 = 100 N. This is carried out by
deleting the rows 1 and 4, columns 1 and 4, and replacing F2 by 100N. The final matrix
equation is,

 100 90 -45 u2
 0 = -45 80 u3

Which gives

 u2 = 1.5459
 u3 0.8696

Deflections:

Spring 1: u4 – u1 = 0

Spring 2: u2 – u1 = 1.54590

Spring 3: u3 – u2 = -0.6763

Spring 4: u3 – u2 = -0.6763

Spring 5: u4 – u2 = -1.5459

Spring 6: u4 – u3 = -0.8696

2.3.4 Boundary Conditions with Known Values

Up to now we have considered problems that have known applied forces, and no known
values of deflection. Now we will consider the procedure for applying the boundary
conditions where, deflections on some nodes are known. Solutions of these problems are
found by going through some additional steps. As discussed earlier, after obtaining the

A Handbook on Computer Aided Design . 2-14

Chapter 2 – The Basic FEA Procedure

structural global matrix equation, deflections are found by solving the equation by
applying a numerical scheme in a computer solution. However, when there are known
nodal values and unknown nodal forces, the method is not directly applicable. In this
situation, the structural equation is first modified by incorporating all boundary
conditions and then the final matrix equation is solved by a computer using a numerical
method, as mentioned earlier. The following procedure traces the necessary steps for
solving problems that involve known nodal values.

2.3.5 Procedure for incorporating the known Nodal Values in the Final
Structural Equation

There are two methods that are frequently used for applying boundary conditions to a
structural matrix equation. In one method, the matrices are partitioned into two parts with
known and unknown terms. In the second method, the known nodal values are applied
directly in the structural matrix. Both methods can be used with equal effectiveness. The
first method will not be discussed here. Details of the second method follow.

Consider the following linear equations,

 k11u1 + k12u2 + k13u3 + k14u4 = F1 (2.2)
 k21u1 + k22u2 + k23u3 + k24u4 = F2 (2.3)

k31u1 + k32u2 + k33u3 + k34u4 = F3 (2.4)
k41u1 + k42u2 + k43u3 + k44u4 = F4 (2.5)

These linear algebraic equations can be written in matrix form as follows.

k11 k12 k13 k14 u1 F1
 k21 k22 k23 k24 u2 = F2

 k31 k32 k33 k34 u3 F3

 k41 k42 k43 k44 u4 F4

Let the known nodal value at node 2 be u2 = U2 (a constant), then by the linear spring
equation

F2 = k22 U2

Therefore, equation (2.2 – 2.5)) above can be reduced to k22u2 = k22U2 = F2 and the
matrix with this boundary condition can be written as

k11 k12 k13 k14 u1 F1
 0 k22 0 0 u2 = F2

 k31 k32 k33 k34 u3 F3

 k41 k42 k43 k44 u4 F4

A Handbook on Computer Aided Design . 2-15

Chapter 2 – The Basic FEA Procedure

Now, equations 2.2, 2.4, 2.5 also contain the u2 term and therefore these equations must
also be modified. We can modify equation 1 by transferring the term k12u2 to the right
hand side and replacing u2 by U2. The modified equation can be written as

 K11u1 + 0 + k13u3 + k14u4 = F1 – k12U2

Similarly, equations 3 and 4 can be written as

 K31u1 + 0 + k33u3 + k34u4 = F3 – k32U2
K41u1 + 0 + k43u3 + k44u4 = F4 – k42U2

The final matrix equation is

 k11 0 k13 k14 u1 F1 – k1U2
 0 k22 0 0 u2 = k22U2

 k31 0 k33 k34 u3 F3 – k32U2

 k41 0 k43 k44 u4 F4 – k42U2

The dotted line indicates changes made in the enclosed terms. The final matrix remains
symmetric and has the same size. The boundary conditions for forces can now be
incorporated and a numerical solution scheme can be used to solve this equation. This
procedure is summarized in the following simple, step-by-step approach.

Given the known boundary conditions at node 2: ui = u2 = U2, follow these steps to
incorporate the known nodal values. Note that, here, i = 2 and j = 1,2,3,4.

Step 1: Set all terms in row 2 to zero, except the term in column 2 (kij = 0, kii = k22≠ 0)

Step 2: Replace F2 with the term k22U2 (Fi = kiiui)

Step 3: Subtract the value ki2 U2 from all the forces, except F2 (subtract kji from the
existing values of fj), where i = 1, 3, and 4

Step 4: Set all the elements in column 2 to zero, except, row2 (all kji = 0, kii # 0)

The above procedure now will be applied in the following example problem.

A Handbook on Computer Aided Design . 2-16

Chapter 2 – The Basic FEA Procedure

Example 2.5

In example problem 2.4 replace the force F by a nodal deflection of 1.5 mm on node 2
and rework the problem.

Solution

Rewriting the final structural matrix equation in example 2.4, we have

 F1 25 -15 0 -10 u1
 F2 = -15 90 -45 -30 u2
 F3 0 -45 80 -35 u3
 F4 -10 -30 -35 75 u4

Boundary condition are: u1 = u4 = 0, and u2 = U2 = 1.5mm. Applying the 4 steps
described above in sequence,

Step 1: Set all terms in row 2 to zero, except the term in column 2 (kij = 0, kii = k22 ≠ 0)

 F1 25 -15 0 -10 u1

 F2 = 0 90 0 0 u2
 F3 0 -45 80 -35 u3
 F4 -10 -30 -35 75 u4

Step 2: Replace F2 with the term k22 U2 = (90)(1.5) = 135, (Fi = kiiui)

 F1 25 -15 0 -10 u1

 135 = 0 90 0 0 u2
 F3 0 -45 80 -35 u3
 F4 -10 -30 -35 75 u4

Step 3: Subtract the value k22 U2 from all the forces, except F2 (subtract kji from the
existing values of fj)

F1 F1 – (15)(1.5) = 22.5 Row 1: kj2 = k12 = -15
F3 F3 – (-45)(1.5) = 67.5 Row 2: kj2 = k32 = -45
F4 F4 – (-30)(1.5) = 45 Row 2: kj2 = k42 = - 30

A Handbook on Computer Aided Design . 2-17

Chapter 2 – The Basic FEA Procedure

Note: F1 = F3 = F4 = 0.

The new force equation now is,

 22.5
 135
 67.5
 45

Step 4: Set all the elements in column 2 to zero, except, row2 (all kji = 0, kii ≠ 0)

Or, k12 = k32 = k42 = 0, and the new equation is,

 22.5 25 0 0 -10 u1
 135 = 0 90 0 0 u2
 67.5 0 0 80 -35 u3
 45 -10 0 -35 75 u4

This is the final equation after the nodal value u2 = 1.5 mm is incorporated into the
structural equation.

The same procedure can be followed for the boundary conditions u1 = u4 = 0. It can be
stated that for zero nodal values, the procedure will always lead to elimination of rows
and columns corresponding to these nodes, that is, the first and fourth rows as well as
columns will drop out. The reader is encouraged to verify this statement.

Thus, the final equation is,

 90 0 u2 = 135
 0 80 u3 67.5

Solving for u2 and u3, we get

 u2 = 1.5
 u3 0.8437

Spring deflection is:

Spring 1: u2 – u1 = 1.500
Spring 2: u3 – u1 = 0.8437
Spring 3: u3 – u2 = -0.6563
Spring 4: u3 – u2 = -0.6563
Spring 5: u4 – u2 = -1.500
Spring 6: u4 – u3 = -1.6875

A Handbook on Computer Aided Design . 2-18

Chapter 2 – The Basic FEA Procedure

2.3.6 Structures That can be Modeled Using a Spring Elements

As mentioned earlier, almost all engineering materials are similar to a linear spring,
satisfying the relation F = ku. Therefore, any structure that deflects only along its axial
direction (with one degree of freedom) can be modeled as a spring element. The
following example illustrates this concept.

Example 2.6

A circular concrete beam structure is loaded as shown. Find the deflection of points at 8”,
16”, and the end of the beam. E = 4 x 106 psi

y

 12 in 3 in 50000 lb
x

 24 in

Figure 2.7

Solution

The beam structure looks very different from a spring. However, its behavior is very
similar. Deflection occurs along the x-axis only. The only significant difference between
the beam and a spring is that the beam has a variable cross-sectional area. An exact
solution can be found if the beam is divided into an infinite number of elements, then,
each element can be considered as a constant cross-section spring element, obeying the
relation F = ku, where k is the stiffness constant of a beam element and is given by k =
AE/L.

In order to keep size of the matrices small (for hand- calculations), let us divide the beam
into only three elements. For engineering accuracy, the answer obtained will be in an
acceptable range. If needed, accuracy can be improved by increasing the number of
elements.

As mentioned earlier in this chapter, spring, truss, and beam elements are line-elements
and the shape of the cross section of an element is irrelevant. Only the cross-sectional
area is needed (also, moment of inertia for a beam element undergoing a bending load
need to be defined). The beam elements and their computer models are shown in figure
2.8.

A Handbook on Computer Aided Design . 2-19

Chapter 2 – The Basic FEA Procedure

Here, the question of which cross-sectional area to be used for each beam section arises.
A good approximation would be to take the diameter of the mid-section and use that to
approximate the area of the element.

 k1 k2 k3

k1 k2 k3
 1 2 3

 1 2 2 3 3 4

1 2 3 4

 Beam sections Equivalent spring elements

Figure 2.8

Cross-sectional area
The average diameters are: d1 = 10.5 in., d2 = 7.5 in., d3 = 4.5. (diameters are taken at the
mid sections and the values are found from the height and length ratio of the triangles
shown in figure 2.10), which is given as

12/L = 3/(L-24), L = 32

Average areas are:

A1 = 86.59 in2 A2 = 56.25 in2 A3 = 15.9 in2

24 in

 12 in d1 d2 d3

3 in

Original Averaged 8 8 8 L- 24

L
Figure 2.9 Figure 2.10

Stiffness

k1 = A1 E/L1 = (86.59)(4 × 106/8) = 4.3295 ×107 lb./in., similarly,

A Handbook on Computer Aided Design . 2-20

Chapter 2 – The Basic FEA Procedure

k2 = A2 E/L2 = 2.8125 ×107 lb./in.
k3 = A3 E/L3 = 7.95 ×106 lb./in.

Element Stiffness Equations

 [K(1)] = 43.295 × 107 1 -1
-1 1

 Similarly,

 [K(2)] = 28.125 × 106 1 -1
-1 1

[K(3)] = 7.9500 × 106 1 -1
-1 1

Global stiffness matrix is

43.295 -43.295 0 0
 [Kg] = -43.295 43.295+28.125 -28.125 0 ×106

 0 -28.125 28.125+7.95 -7.95
 0 0 -7.95 7.95

Now the global structural equations can be written as,

43.295 -43.295 0 0 u1 F1
 106 × -43.295 71.42 -28.125 0 u2 = F2

 0 -28.125 36.075 -7.95 u3 F3
 0 0 -7.95 7.95 u4 F4

A Handbook on Computer Aided Design . 2-21

Chapter 2 – The Basic FEA Procedure

Applying the boundary conditions: u1 = 0, and F1 = F2 = F3 = 0, F4 = 5000 lb., results in
the reduced matrix,

 71.42 -28.125 0 u2 0
 106 × -28.125 36.075 -7.95 u3 = 0

 0 -7.95 7.95 u4 5000

Solving we get,

u2 0.0012
u3 = 0.0029 in.
u4 0.0092

A Handbook on Computer Aided Design 2-22

CHAPTER 3

Truss Element

3.1 Introduction

The single most important concept in understanding FEA, is the basic understanding of
various finite elements that we employ in an analysis. Elements are used for representing
a real engineering structure, and therefore, their selection must be a true representation of
geometry and mechanical properties of the structure. Any deviation from either the
geometry or the mechanical properties would yield erroneous results.

The elements used in commercial codes can be classified in two basic categories:

1. Discrete elements: These elements have a well defined deflection equation that can
be found in an engineering handbook, such as, Truss and Beam/Frame elements. The
geometry of these elements is simple, and in general, mesh refinement does not give
better results. Discrete elements have a very limited application; bulk of the FEA
application relies on the Continuous-structure elements.

2. Continuous-structure Elements: Continuous-structure elements do not have a well
define deflection or interpolation function, it is developed and approximated by using
the theory of elasticity. In general, a continuous-structure element can have any
geometric shape, unlike a truss or beam element. The geometry is represented by
either a 2-D or a 3-D solid element – the continuous- structure elements. Since
elements in this category can have any shape, it is very effective in calculation of
stresses at a sharp curve or geometry, i.e., evaluation of stress concentrations. Since
discrete elements cannot be used for this purpose, continuous structural elements are
extremely useful for finding stress concentration points in structures.

Element

Figure 3.1 A Discrete element Structure Node

FEA
Chapter 3 Truss Element

As explained earlier, for analyzing an engineering structure, we divide the structure into
small sections and represent them by appropriate elements. Nodes always define
geometry of the structure and elements are generated when the applicable nodes are
connected. Results are always obtained for node points – and not for elements - which are
then interpolated to provide values for the corresponding elements.

For a static structure, all nodes must satisfy the equilibrium conditions and the continuity
of displacement, translation and rotation.

In the following sections, we will get familiar with characteristics of the basic finite
elements.

3.2 Structures & Elements

Most 3-D structures can be analyzed using 2-D elements, which require relatively less
computing time than the 3-D solid elements. Therefore, in FEA, 2-D elements are the
most widely used elements. However, there are cases where we must use 3-D solid
elements. In general, elements used in FEA can be classified as:

- Trusses
- Beams
- Plates
- Shells
- Plane solids
- Axisymmetric solids
- 3-D solids

Since Truss element is a very simple and discrete element, let us look at its properties and
application first.

3.3 Truss Elements

The characteristics of a truss element can be summarized as follows:

Truss is a slender member (length is much larger than the cross-section).
It is a two-force member i.e. it can only support an axial load and cannot support a
bending load. Members are joined by pins (no translation at the constrained node,
but free to rotate in any direction).
The cross-sectional dimensions and elastic properties of each member are
constant along its length.
The element may interconnect in a 2-D or 3-D configuration in space.
The element is mechanically equivalent to a spring, since it has no stiffness
against applied loads except those acting along the axis of the member.

A Handbook on Computer Aided Design 3-2

FEA
Chapter 3 Truss Element

However, unlike a spring element, a truss element can be oriented in any direction
in a plane, and the same element is capable of tension as well as compression.

j

i

Figure 3.2 A Truss Element

3.3.1 Stress – Strain relation:

As stated earlier, all deflections in FEA are evaluated at the nodes. The stress and strain
in an element is calculated by interpolation of deflection values shared by nodes of the
element. Since the deflection equation of the element is clearly defined, calculation of
stress and strain is rather simple matter. When a load F is applied on a truss member, the
strain at a point is found by the following relationship.

x

 L
or, ε = δL/L

L + δL

dx
du

=ε

 Figure 3.3 Truss member in Tension

where, ε = strain at a point
u = axial displacement of any point along the length L

By hook’s law,

εσ E=

 Where, E = young’s modulus or modulus of elasticity.

From the above relationship, and the relation,

A Handbook on Computer Aided Design 3-3

FEA
Chapter 3 Truss Element

F = Aσ

the deflection, δL, can be found as

δL = FL/AE (3.1)

Where, F = Applied load
A = Cross-section area
L = Length of the element

3.3.2 Treatment of Loads in FEA

For a truss element, loads can be applied on a node only. If loads are distributed on a
structure, they must be converted to the equivalent loads that can be applied at nodes.
Loads can be applied in any direction at the node, however, the element can resist only
the axial component, and the component perpendicular to the axis, merely causes free
rotation at the joint.

3.3.3 Finite Element Equation of a Truss Structure

In this section, we will derive the finite element equation of a truss structure. The
procedure presented here is the basis for all FEA analyses formulations, wherever h-
element are used.

Analogues to the previous chapter, we will use the direct or equilibrium method for
generating the finite element equations. Assembly procedure for obtaining the global
matrix will remain the same.

In FEA, when we find deflections at nodes, the deflections are measured with respect to
a global coordinate system, which is a fixed frame of reference. Displacements of
individual nodes with respect to a fixed coordinate system are desirable in order to see
the overall deformed structural shape. However, these deflection values are not
convenient in the calculation of stress and strain in an element. Global coordinate system
is good for predicting the overall deflections in the structure, but not for finding
deflection, strain, and stress in an element. For this, it’s much easier to use a local
coordinate system. We will derive a general equation, which relates local and global
coordinates.

In Figure 3.4, the global coordinates x-y can give us the overall deflections measured
with respect to the fixed coordinate system. These deflections are useful for finding the
final shape or clearance with the surroundings of the structure. However, if we wish to
find the strain in some element, say, member 2-7 in figure 3.4, it will be easier if we
know the deflections of node 2 and 3, in the y’ direction. Thus, calculation of strain
value is much easier when the local deflection values are known, and will be time-

A Handbook on Computer Aided Design 3-4

FEA
Chapter 3 Truss Element

consuming if we have to work with the x and y values of deflection at these nodes.
Therefore, we need to establish a trigonometric relationship between the local and global
coordinate systems. In Figure 3.4, xy coordinates are global, where as, x’y’ are local
coordinates for element 4-7

y
 y’

 6 7 x’ 8 Node

Element

1 2 3 4 5 x

Fixed-Frame Origin

 Figure 3.4. Local and Global Coordinates

3.3.4 Relationship Between Local and Global Deflections

Let us consider the truss member, shown in Figure 3.5. The element is inclined at an
angle θ, in a counter clockwise direction. The local deflections are δ1 and δ2. The global
deflections are: u1, u2, u3, and u4. We wish to establish a relationship between these
deflections in terms of the given trigonometric relations.

 u4

δ2, R2
u2 2

u3

1 θ
u1

R1, δ1

Figure 3.5 Local and Global Deflections

A Handbook on Computer Aided Design 3-5

FEA
Chapter 3 Truss Element

By trigonometric relations, we have,

δ1 = u1 cosθ + u2 sinθ = c u1 + s u2

δ2 = u3 cosθ + u4 sinθ = c u3 + s u4

where, cosθ = c, and sinθ = s

Writing the above equations in a matrix form, we get,

u1
δ1 c s 0 0 u2

= u3 (3.2)
δ1 0 0 c s u4

Or, in short form, δ = T u

Where T is called Transformation matrix.

Along with equation (3.2), we also need an equation that relates the local and global
forces.

3.3.5 Relationship Between Local and Global Forces

By using trigonometric relations similar to the previous section, we can derive the desired
relationship between local and global forces. However, it will be easier to use the work-
energy concept for this purpose. The forces in local coordinates are: R1 and R2, and in
global coordinates: f1, f2, f3, and f4, see Figure 3.6 for their directions.

Since work done is independent of a coordinate system, it will be the same whether we
use a local coordinate system or a global one. Thus, work done in the two systems is
equal and given as,

W = δT R = uT f, or in an expanded form,

 R1 f1

W = δ1 δ2 = u1 u1 u1 u1 f2
 R2 f3

f4

 = {δ}T {R} = {u}T{f}

A Handbook on Computer Aided Design 3-6

FEA
Chapter 3 Truss Element

Substituting δ = T u in the above equation, we get,

[[T] {u}]T {R} = {u}T {f}, or

{u}T [T]T {R} = {u}T {f}, dividing by {u}T on both sides, we get,

 [T]T {R} = {f} (3.3)

Equation (3.3) can be used to convert local forces into global forces and vice versa.

F4, u4

 R2, δ2
f2, u2 2

f3 u3

1 θ

R1, δ1 f1, u1

Figure 3.6 Local and Global Forces

3.3.6 Finite Element Equation in Local Coordinate System

Now we will derive the finite element equation in local coordinate system. This equation
will be converted to global coordinate system, which can be used to generate a global
structural equation for the given structure. Note that, we can not use the element
equations in their local coordinate form, they must be converted to a common coordinate
system, the global coordinate system.

Consider the element shown below, with nodes 1 and 2, spring constant k, deflections δ1,
and δ2, and forces R1 and R2. As established earlier, the finite element equation in local
coordinates is given as,

R1 k -k δ1 1 k 2
 = δ1, R1

R2 -k k δ1 δ2, R2

Figure 3.7 A Truss Element
Recall that, for a truss element, k = AE/L

A Handbook on Computer Aided Design 3-7

FEA
Chapter 3 Truss Element

Let ke = stiffness matrix in local coordinates, then,

AE/L -AE/L
 ke = Stiffness matrix in local coordinates

-AE/L AE/L

3.3.7 Finite Element Equation in Global Coordinates

Using the relationships between local and global deflections and forces, we can convert
an element equation from a local coordinate system to a global system.

Let kg = Stiffness matrix in global coordinates.

In local system, the equation is: R = [ke]{ δ} (A)

We want a similar equation, but in global coordinates. We can replace the local force R
with the global force f derived earlier and given by the relation:

{f} = [TT]{R}

 Replacing R by using equation (A), we get,

{f} = [TT] [[ke]{ δ}],

and δ can be replaced by u, using the relation δ = [T]{u}, therefore,

{f} = [TT] [ke] [T]{u}

 {f} = [kg] { u}

Where, [kg] = [TT] [ke] [T]

Substituting the values of [T]T, [T], and [ke], we get,

 c 0
[kg] = s 0 AE/L -AE/L c s 0 0

 0 c -AE/L AE/L 0 0 c s
 0 s

A Handbook on Computer Aided Design 3-8

FEA
Chapter 3 Truss Element

Simplifying the above equation, we get,

c2 cs -c2 -cs
cs s2 -cs -s2

 [kg] = -c2 -cs c2 cs (AE/L)
-cs -s2 cs s2

This is the global stiffness matrix of a truss element. This matrix has several noteworthy
characteristics:

The matrix is symmetric
Since there are 4 unknown deflections (DOF), the matrix size is a 4 x 4.
The matrix represents the stiffness of a single element.
The terms c and s represent the sine and cosine values of the orientation of
element with the horizontal plane, rotated in a counter clockwise direction
(positive direction).

The following example will illustrate its application.

(1)
1 260 AL

Examples 3

For the truss structure shown: 150 AL (3)
(2) ST

1. Find displacements of joints 2 and 3 300 0.4 kN
2. Find stress, strain, & internal forces

in each member. 2

AAL = 200 mm2 , AST = 100 mm2

All other dimensions are in mm.

Solution

Let the following node pairs form the elements:

Element Node Pair
 (1) 1-3
 (2) 1-2
 (3) 2-3

Using Shigley’s Machine Design book for yield strength values, we have,

A Handbook on Computer Aided Design 3-9

FEA
Chapter 3 Truss Element

Sy (AL) = 0.0375kN/mm2 (375 Mpa)

Sy (ST) = 0.0586kN/mm2 (586 Mpa)

E (AL) = 69kN/mm2 , E (ST) = 207kN/mm2

A(1) = A(2) = 200mm2 , A(3) =100mm2

Find the stiffness matrix for each element
 u2 u6

Element (1)
(1)

L(1) = 260 mm, u1 u5
E(1) = 69kN/mm2, 1 260 mm 3
A(1) = 200mm2

θ = 0
c = cosθ = 1, c2 = 1
s = sinθ = 0, s2 = 0
cs = 0

2 2

2 2

2 2
(1)

2 2

2 2

(1)

169 / 200 53.1 /
260

[]

1 1 0 1 0
2 0 1 0 0

[] (53.1)
5 1 0 1 0
6 0 0 0 0

g

g

EA kN mm mm kN mm
L mm

c cs c cs
cs s cs s AEK

Lc cs c cs
cs s cs s

kNK
mm

= × × =

 − −
 − − =
 − −

− −

−

 =
−

A Handbook on Computer Aided Design 3-10

FEA
Chapter 3 Truss Element

u2
Element 2

θ = 900
c = cos 900 = 0, c2 = 0 1 u1

s = sin 900 = cos 00 = 1, s2 = 1

cs = 0 (2)

EA/L = 69 x 200 x (1/150) = 92 kN/mm

2 u3
3 4 1 2

 u4
0 0 0 0 3
0 1 0 -1 4

 [kg](2) = (92) 0 0 0 0 1
0 -1 0 1 2

Element 3 u6

θ = 300

c = cos 300 = 0.866, c2 = 0.75
3 u5

s = cos 600 = .5, s2 = 0.25

cs = 0.433 u4 (3)
300 mm

EA/L = 207 x 100 x (1/300) = 69 kN/mm

θ = 300
2 u3

3 4 5 6

3 .75 .433 -.75 -.433
 4 -.433 .25 -.433 -.25 (69)

[kg](3) = 5 -.75 -.433 .75 .433
 6 -.433 -.25 .433 .25

A Handbook on Computer Aided Design 3-11

FEA
Chapter 3 Truss Element

Assembling the stiffness matrices

Since there are 6 deflections (or DOF), u1 through u6, the matrix is 6 x 6. Now, we will
place the individual matrix element from the element stiffness matrices into the global
matrix according to their position of row and column members.

Element [1]

1 2 3 4 5 6

1 5 3 . 1 5 3 . 1
2
3
4
5 5 3 . 1 5 3 . 1
6

−

 −

The blank spaces in the matrix have a zero value.

Element [2]

 1 2 3 4 5 6

 1
2 92 -92
3
4 -92 92
5
6

A Handbook on Computer Aided Design 3-12

FEA
Chapter 3 Truss Element

Element [3]

1 2 3 4 5 6
 1

 2
 3 51.7 29.9 -51.7 -29.9
 4 29.9 17.2 -29.9 -17.2
 5 -51.7 -29.9 51.7 29.9

 6 -29.9 -17.2 29.9 17.2

Assembling all the terms for elements [1] , [2] and [3], we get the complete matrix
equation of the structure.

−

=

−−
−−−

−−−
−−

−
−

)(4.0
)(0
)(0
)(0
)(0
)(0

2.179.292.179.2900
9.298.1049.297.5101.53
2.179.292.1099.29920
9.297.519.297.5100

00920920
01.530001.53

6
5
4
3
2
1

6

5

4

3

2

1

6

5

4

3

2

1

F
F
F
F
F
F

u
u
u
u
u
u

Boundary conditions
x and y directions, where as, node 2 is fixed in x-direction only

1= u2 = u3 = 0.

herefore, all the columns and rows containing these elements should be set to zero. The

Node 1 is fixed in both
and free to move in the y-direction. Thus,

u

T
reduced matrix is:

−

=

−
−

4.0
0

2.179.292.17
9.298.1049.29

6

5

4

u
u

 −− 02.179.292.109 u

A Handbook on Computer Aided Design 3-13

FEA
Chapter 3 Truss Element

riting the matrix equation into algebraic linear equations, we get,

 29.9u4 - 29.9u5 - 17.2u6 = 0

4

lving, we get u4 = -0.0043

ress, Strain and deflections

lement (1)

ote that u1, u2, u3, etc. are not coordinates, they

lement (2)

W

 -29.9u4 + 104u5 + 29.9u6 = 0
 -17.2u4 + 29.9u5 + 17.2u6 = -0.

so
 u5 = 0.0131
 u6 = -0.0502

S

E

N
 are actual displacements.

5

5

5
2

0.0131 5.02 10
260

69 5.02 10 0.00347

, 0.00347 200 0.693

L mm
L mm

kNE
mm

Reaction R A kN

σ

σ

−

−

∆
∈= = = ×

= ∈= × × =

= = × =

0.0131L u∆ = =

E

4

5

5
2

3

0.0043 2.87 10
150

69 2.87 10 1.9803

(1.9803 10)(200) 0.396

L
L

kNE
mm

R A k

σ

σ

−

−

−

∆
∈= = = ×

= ∈= × × =

= = × =

0.0043L u

N

∆ = =

lement (3)
t (3) is at an angle 300, the change in the length is found by adding the

E
Since elemen
displacement components of nodes 2 and 3 along the element (at 300). Thus,

A Handbook on Computer Aided Design 3-14

FEA
Chapter 3 Truss Element

0 0 0
5 6 4

0 0

5

5
2

cos30 sin 30 cos30

0.0131cos30 0.0502sin 30 0.0043cos30
0.0116 ()

0.0116 3.87 10
300

207 3.87 10 0.0080

, 0.0080 100 0.800

L u u u
L

element is compressed
L

L
kNE

mm
Axial force R A kN

σ

σ

−

−

∆ = + −

∆ = − +
= −

∆ −
∈= = = − ×

= ∈= ×− × = −

= = − × = −

0

Factor of Safety
Factor of safety ‘n’ is the ratio of yield strength to the actual stress found in the part.

0.0375(1) 10.8
0.00347
0.0375(2) 18.9

0.00198
0.0586(3) 7.325
0.0080

y

y

y

S
Element n

S
Element n

S
Element n

σ

σ

σ

= = =

= = =

= = =

The lowest factor of safety is found in element (3), and therefore, the steel bar is the most
likely to fail before the aluminum bar does.

Final Notes
- The example presented gives an insight into how the element analysis works. The

example problem is too simple to need a computer based solution; however, it
gives the insight into the actual FEA procedure. In a commercial FEA package,
solution of a typical problem generates a very large stiffness matrix, which will
require a computer assisted solution.

- In an FEA software, the node and element numbers will have variable subscripts
so that they will be compatible with a computer-solution

- Direct or equilibrium method is the earliest FEA method.

A Handbook on Computer Aided Design 3-15

FEA
Chapter 3 Truss Element

y

Example 2 1 (1) 2
4000 lb

Given: 20”
Elements 1 and 2: Aluminum 50”
Element 3: steel (3)
A(1) = 1.5in2 (2)
A(2) = 1.0in2 40”
A(3) = 1.0in2

3 4 x
Required:
Find stresses and displacements using hand calculations. 30”

Solution

Calculate the stiffness constants:

in
lb

L
AEK

in
lb

L
AEK

in
lb

L
AEK

5
6

3

5
6

2

5
6

1

100.6
50

101030

105.2
40

10101

105.7
20

10105.1

×=
××

==

×=
××

==

×=
××

==

Calculate the Element matrix equations.

Element (1) u2 u4
(1)

u1 u3
 1 2

Denoting the Spring constant for element (1) by k1, and the stiffness matrix by K(1), the
stiffness matrix in global coordinates is given as,

A Handbook on Computer Aided Design 3-16

FEA
Chapter 3 Truss Element

 1 2 3 4

2 2 1

[Kg](1) = K1

For element (1), θ = 00, therefore

 =1, c2 = 1

= 0, s2 =0, and cs = 0

1 2 3 4

1

[k(1)] = k1

u4

lement (2) 2 u3

or this element, θ = 900, Therefore,
(2)

= cosθ = 0, c2 = 0 θ = 900
3 u

he stiffness matrix is, u6

5 6 3 4

2 2 5

[kg](2) = k2

c cs -c -cs

cs s2 -cs -s2 2
c2 -cs c2 cs 3
-cs -s2 cs s2 4

1 0 -1 0

c

s

0 0 0 0 2
1 0 1 0 3
0 0 0 0 4

E

F

c
s = sinθ = 1, s2 = 1 5

c cs -c -cs

cs= 0

T

cs s2 -cs -s2 6
c2 -cs c2 cs 3
-cs -s2 cs s2 4

A Handbook on Computer Aided Design 3-17

FEA
Chapter 3 Truss Element

5 6 3 4

5

[kg](2) = k2

lement 3 u4

2 u3

= cos(126.90) = -0.6, c2 = .36

= sin(126.90, s2 = .64
7

u8

7

[kg](3) = k3

0 0 0 0

0 1 0 -1 6
0 0 0 0 3
0 -1 0 1 4

E

For element (3), θ = 126.90.

c (3)

 4

θ = 126.90
s

u
cs = -0.48

7 8 3 4

.36 -.48 -.36 .48

-.48 .64 .48 -.64 8
-.36 .48 .36 -.48 3
.48 -.64 -.48 .64 4

ssembling the global Matrix
mbly described earlier, the assembled matrix is,

[Kg] =

A
Following the procedure for asse

1 1

1 1 3 3 3

3 2 3 2 3

2 2

3 3 3

3 3 3

0 0 0 0 01
0 0 0 0 0 0 0 02

0 .36 .48 0 0 .36 .483
0 0 .48 .64 0 .48 .644
0 0 0 0 0 0 0 05
0 0 0 0 0 06
0 0 .36 .48 0 0 .36 .487
0 0 .48 .64 0 0 .48 .648

K K

K K K K K K
K K K K K K

K K
K K K

K K K

−

 − + − −
 + − −

−
 − −

− −

3

3

3

3

0

K
K

A Handbook on Computer Aided Design 3-18

FEA
Chapter 3 Truss Element

The boundary conditions are:

1 = u2 = u5 = u6 = u7 = u8 = 0

e will suppress the corresponding rows and columns. The reduced matrix is a 2 x2,

u

W
given below,

1 3 3

3 2 3

1 3 3 3

3 2 3 4

.36 .483
[]

0.48 .644

The final equation is

.36 .48 4000
0.48 .64 8000

g

K K K
K

K K K

K K K u
K K K u

+ −
= − +

+ − −
= − +

ubstituting values for k1, k2, and k3, we get S

35

4

3

4

5
1

1
1

5
2

2
2

5
3

3
31

9.66 2.88 4000
10

2.88 6.34 8000

0.0000438
0.012414

(7.5 10)(0.0000438) 214
1.5

(2.5 10)(0.012414) 3015
1.0

(6 10)(0.0000

u
u

u in
u in

P K u psi
A A
P K u psi
A A

K uP
A A

σ

σ

σ

− −
= −

= −
= −

∆ × −
= = = = −

∆ × −
= = = =

∆ × −
= = =

0 0438cos53.1 .012414sin 53.1) 6119
1.0

psi+
=

A Handbook on Computer Aided Design 3-19

FEA

CHAPTER 4

Beam Element

4.1 Introduction

Beam element is a very versatile line-element, it has six degrees of freedom at each node,
which include, translations and rotations along the x, y, and z directions, respectively.
Figure 4.1 shows the positive directions of these displacements.

y
vjy

θjy vjx
i x

θjz j θjx

 z vjz

 Figure 4.1 Beam Element with six degrees of freedom at each node

Beam element is employed to simulate a slender structure that has an uniform cross
section. The element is unsuitable for structures that have complex geometry, holes, and
points of stress concentration.

The stiffness constant of a beam element is derived by combining the stiffness constants
of a beam under pure bending, a truss element, and a torsion bar. Thus, a beam element
can represent a beam in bending, a truss element, and a torsion bar. In FEA it’s a
common practice to use beam elements to represent all or any of these three loads.

We will derive the element stiffness equation for a beam element by first deriving the
stiffness equation of a beam in bending, and then superimposing the stiffness of a truss
and a torsion bar element.

FEA
Chapter 4 Beam Element

4.1 Derivation of a Stiffness Equation for a Beam Element
Under Pure Bending

A beam, such as, a cantilever beam, under pure bending (without axial loads or torsional
loads), has two-degrees of freedom at any point, transverse deflection v and rotation θ, as
shown in Figure 4.2.

 F

 θ v

Figure 4.2 Cantilever Beam with it’s DOF, v and θ

A beam element has a total of four degrees of freedom, two at each node. Since there are
four degrees of freedom, the size of the stiffness matrix of a beam element has the size 4
x 4.

We will derive the stiffness matrix equation using a simple method, known as Stiffness
Influence Coefficient Method. In this procedure, a relationship between force and the
coefficients that influence stiffness is established. For a beam element, these coefficient
consist of: the modulus of elasticity, moment of inertia, and length of the element. For a
two-node beam element, there are two deflections and two rotations, namely, v1, θ1, v2,
and θ2. Force and influence coefficient relationship is established by setting each of the
four deflection values to unity, with the remaining deflection values equal to zero. The
procedure follows.

Consider a beam element, loaded in such a way that it has the deflection values: vi = 1, θi
= 0, vj = 0, θj = 0

 i j
vi, θi vj, θj

 Figure 4.3 Beam Element

The above deflections can be produced by a combination of load conditions, shown in
figure 4.4.

A Handbook on Computer Aided Design 4-2

FEA
Chapter 4 Beam Element

The following deflection relationships for loading of Figures 4.4 (a) and (b) can be found
in any Machine Design Handbook, and is given as,

 vmax

vmax = (FL3)/(3EI)
y

 θ θ = - (FL2)/(2EI)
 i L j x

F
(a)

y
 Mi

L Mj vmax = - (ML2)/(2EI)
 i j
 vmax x θ = (ML)/(EI)

(b)

 Figure 4.4

Applying these relationships to the beam of Figure 4.3, we get,

1 = vi = (vi)F + (vi)M

1 = vi = (Fi L3)/3 EI - (Mi L2)/2EI (4.1)

and θ = 0 = (θ)F + (θ)M

0 = - (Fi L2)/2EI + (Mi L)/EI (4.2)

Solving Equations (4.1) and (4.2), we get,

Fi = (12EI)/L3 (A)

Fj = - Fi = -(12EI)/L3 (B)

Mi = (6EI)/L2 (C)

From Figure 4. 4 (a) and (b),

A Handbook on Computer Aided Design 4-3

FEA
Chapter 4 Beam Element

 Mj = Fi L - Mi
 = (12EI)/L2 = (6EI)/ L2
 = (6EI)/ L2 (D)

Writing equations (A) through (D) in a matrix form we get,

Fi (12EI)/L3 1 (12EI)/ L3 0 0 0 1

Mi (6EI)/ L2 1 (6EI)/ L2 0 0 0 0
= =

Fj -(12EI)/ L3 1 -(12EI)/ L3 0 0 0 0

Mj (6EI)/ L2 1 (6EI)/ L2 0 0 0 0

Using a similar procedure and setting the following deflection values:

 vi = 0, θi = 1, vj = 0, θj = 0, we get,

Fi (6EI)/L2 1 0 (6EI)/ L2 0 0 0

Mi (4EI)/ L 1 0 (4EI)/ L 0 0 1
= = (4.6)

Fj -(6EI)/ L2 1 0 -(6EI)/ L2 0 0 0

Mj (2EI)/ L 1 0 (2EI)/ L 0 0 0

Similarly, setting vj = 1 and , θj = 1, respectively, and keeping all other deflection values
to zero, we get the final matrix as,

Fi (12EI)/L3 (6EI)/ L2 -(12EI)/ L3 (6EI)/ L2 1

Mi (6EI)/ L2 (4EI)/ L -(6EI)/ L2 (2EI)/ L 1
= (4.7)

Fj -(12EI)/ L3 -(6EI)/ L2 (12EI)/L3 -(6EI)/ L2 1

Mj (6EI)/ L2 (2EI)/ L -(6EI)/ L2 (4EI)/ L 1

A Handbook on Computer Aided Design 4-4

FEA
Chapter 4 Beam Element

Note that, the first term on the RHS of the above equation is the stiffness matrix and the
second term is the deflection. In the case where deflections are other than unity, the
above equation will provide an element equation for a beam (in bending), which can be
written as,

Fi (12EI)/L3 (6EI)/ L2 -(12EI)/ L3 (6EI)/ L2 vi

Mi (6EI)/ L2 (4EI)/ L -(6EI)/ L2 (2EI)/ L θi
= (4.7)

Fj -(12EI)/ L3 -(6EI)/ L2 (12EI)/L3 -(6EI)/ L2 vj

Mj (6EI)/ L2 (2EI)/ L -(6EI)/ L2 (4EI)/ L θj

Where Fi, Mi, Fj, Mj are the loads corresponding to the deflections vi, θi, vj, θj.

Equation (4.7) is the equation of a beam element, which is under pure bending load (no
axial or torsion loads). The stiffness matrix is a 4 x 4, symmetric matrix. Using this
equation, we can solve problems in which several beam elements are connected in an uni-
axial direction. The assembly procedure is identical to the truss elements. However, if the
beam elements are oriented in more than one direction, we will have to first transform the
above equation (4.7) in to a global stiffness matrix equation (analogues to the procedure
used for truss elements).

For a beam element, transformation of a local stiffness matrix into a global equation
involves very complex trigonometric relations, and therefore, we will defer the
derivations at this time. However, Equation (4.7) can be used for solving a beam
problem, loaded under bending loads. In order to understand the application of this
equation, we will apply it to solve some statically indeterminate problems.

A Handbook on Computer Aided Design 4-5

FEA
Chapter 4 Beam Element

Example 1

For the beam shown, determine the displacements and slopes at the nodes, forces in each
element, and reactions at the supports.

5 ft 5 ft 100 lb
E = 1.4 x 106 psi, I = 2.4 in4

 K = 200 lb/in

Solution

The beam structure is descritized into three elements and 4-nodes, as shown.

 [1] [2]
 3

 1 2

[3]

4

First, we will find the element stiffness matrix for each element, next we will assemble
the stiffness matrices, apply the boundary conditions, and finally, solve for node
deflection. Internal forces and reactions are calculated by back-substituting the
deflections in the structural equation.

 [1]
Element 1

1 2

EI/L3 = (1.4 x 106) x (2.4)/(5x12)3 = 15.55

The general equation of a stiffness matrix is given as,

A Handbook on Computer Aided Design 4-6

FEA
Chapter 4 Beam Element

12 6L -12 6L v1

6L 4L2 -6L 2 L2 θ1
[Ke](1) = (EI/L3)

-12 -6L 12 -6L v2

6L 2 L2 -6L 4 L2 θ2

[2]
Element 2 2 3

12 6L -12 6L v2

6L 4L2 -6L 2 L2 θ2
[Ke](1) = (EI/L3)

-12 -6L 12 -6L v3

6L 2 L2 -6L 4 L2 θ3

3
Element 3

[3]

4

[Ke](3) = K -K v3
-K K v4

A Handbook on Computer Aided Design 4-7

FEA
Chapter 4 Beam Element

To get the global stiffness matrix, we will use the same procedure used for assembling
truss element stiffness equations. In terms of E, L, and I the assembled global stiffness
matrix is,

v1 θ1 v2 θ2 v3 θ3 v4

 v1 12 6L -12 6L 0 0 0

θ1 4L2 -6L 2 L2 0 0 0

v2 24 0 -12 6L 0
x (EI) /(L3)

θ2 8L2 -6L 2L2 0

v3 12 +K’ -6L - K’

θ3 4L2 0

v4 SYMMETRY K’

Where K’ = (K) x [L3 / (EI)]

Our next step is to write the structural equation; however, we can reduce the size of the
stiffness matrix by applying the given boundary conditions:

v1 = θ1 = 0 node 1 is fixed

v2 = 0 node 2 has no vertical deflection, but it’s free to rotate.

V4 = 0 node 4 is fixed.

The reduced stiffness matrix is

 8L2 -6L 2L2

 KG = EI / (L3) -6L 12+K’ -6L
 2L2 -6L 4L2

Substituting the values of E, L, and I the structural equation can be written as,

A Handbook on Computer Aided Design 4-8

FEA
Chapter 4 Beam Element

 0 1152 -72 288 θ2
 -100 = (15.55) -72 16.11 -72 v3

 0 288 -72 576 θ3

θ2 = - 0.0032 rad
Solving, we get v3 = - 0.4412 in

θ3 = -0.0095 rad

A Handbook on Computer Aided Design 4-9

FEA
Chapter 4 Beam Element

4.3 Arbitrarily Oriented 2-D Beam Element
The stiffness equation for an arbitrarily oriented beam element can be derived with a

procedure similar to the truss element.

y d2y
x

 y
ϕ2

d1y d1y

ϕ1 d1x x

d1y = d1y cosθ - d1x sinθ = d1y c - d1x s

d2y = d1y cosθ – d2x sinθ = d2y c – d2x s

and ϕ1 = ϕ1, ϕ2 = ϕ2

Note: The underscored terms represent local coordinate values. Thus, x and y are local
coordinates and x and y are global coordinates.

The above equations can be written in a matrix form,

d1x
d1y -s c 0 0 0 0 d1y
ϕ1 = 0 0 1 0 0 0 ϕ1
d2y 0 0 0 -s c 0 d2x
ϕ2 0 0 0 0 0 1 d2y

ϕ2

-s c 0 0 0 0
Let T = 0 0 1 0 0 0

 0 0 0 -s c 0
0 0 0 0 0 1 , the transformation matrix.

Thus, {d} = [T] {d}
Global

Local

Note that angle ϕ is independent of the coordinate systems, and ϕ1 = ϕ1, ϕ2 = ϕ2

A Handbook on Computer Aided Design 4-10

FEA
Chapter 4 Beam Element

As derived in the case of the truss element, relationship between local and global stiffness
matrices is given as

 [kg] = [T] [k] [T]

Where, [kg] = Global stiffness matrix of an element
[T] = Transformation matrix

 [k] = Local stiffness matrix of the element

Substituting the values of [T] and [k], we get the global equation of a beam element
oriented arbitrarily at an angle θ as,

12S2 -12SC -6LS -12S2 -12SC -6LS
12C2 6LC 12SC -12C2 6LC

k = EI/L 4L2 6LS -6LC 2L2
 12S2 -12SC 6LS

Symmetry 12C2 4L2

This is the equation of a beam element (without axial or torsional load, and oriented at an
angle θ .

Also, S = sinθ , C = cosθ in the above equation.

4.4 Beam Element with Combined Bending and Axial loads

First, we will derive the stiffness matrix in local coordinates and then convert it in to
global coordinates.

4.4.1 Stiffness matrix of a beam element with bending and axial loads
in local coordinates

The stiffness equation for the combined bending and axial load can be written by
superimposing the axial stiffness terms over the bending stiffness.

For axial loading, the structural equation is,

 f1x 1 -1 d1x
= AE/L3

 f2x -1 1 d2x

A Handbook on Computer Aided Design 4-11

FEA
Chapter 4 Beam Element

And for bending loading, the structural equation is,

f1y 12 6L -12 6L d1y

m1 6L 4L2 -6L 2L2 φ1
= AE/L3

f2y -12 -6L 12 -6L d2y

m2 6L 2L2 -6L 4L2 φ2

Therefore, the combined loading equation is

f1x C1 0 0 - C1 0 0 d1x

f1y 0 12 C2 6C2L 0 -12 C2 6C2L d1y

m1 0 6 C2L 4C2L2 0 -6C2L 2C2L2 φ1
=

f2x -C1 0 0 C1 0 0 d2x

f2y 0 -12 C2 -6C2L 0 12 C2 -6C2L d2y

m2 0 6 C2L 2C2L2 0 -6C2L 4C2L2 φ2

And,[

−
−−−

−
−
−

−

=

2
22

2
22

2222

11

2
22

2
22

2222

11

460260
61206120
0000

260460
61206120

0000

]

LCLCLCLC
LCCLCC

CC
LCLCLCLC
LCCLCC

CC

k

Where, C1 = AE/L, and C1 = EI/L3

A Handbook on Computer Aided Design 4-12

FEA
Chapter 4 Beam Element

4.4.2 Transformation matrix for combined Bending and Axial loading.

For the axial loading, the relationship between the local and global coordinates was
derived earlier, as

SdCdd

SdCd
ddd

yxx

yx

yxx

222

^

11

111

^
sincos

+=

+=

+= θθ

Also, for bending load, derived previously,

φφ

φφ

=

−=

=

−=

^

2

222

^

^

1

111

^

SdCdd

SdCdd

xyy

xyy

Therefore, the relationship for the combined bending and axial loading can be written as

−

−

=

2

2

2

1

1

1

^

2

^

2

^

2

^

1

^

1

^

1

100000
0000
0000
000100
0000
0000

φ

φ

φ

φ

y

x

y

x

y

x

y

x

d

d

d

d

CS
SC

CS
SC

d

d

d

d

Or,

[]{ }dTd =

 ^

A Handbook on Computer Aided Design 4-13

FEA
Chapter 4 Beam Element

Where,

−

−

=

100000
0000
0000
000100
0000
0000

][

CS
SC

CS
SC

T

4.4.3 2-D Beam Element Equation for Combined Loading – Axial
and Bending – at an Arbitrary Orientation θ

Substituting the values of and [T] into the equation [] , we get

 ^
K]][[][

^
TKTK T=

−+

 −+

−

 +−

 −−+

−

 −−

 +−−

 −+

=

I

C
L
IC

L
IASsymmetry

S
L
ICS

L
IAS

L
IAC

IC
L
IS

L
II

C
L
IC

L
IASCS

L
IAC

L
IC

L
IAS

S
L
ICS

L
IAS

L
IACS

L
ICS

L
IAS

L
IAC

L
EK

4

612

61212

2664

61212612

6121261212

2
2

2

2
2

2
2

2
2

2
2

2
2

2

2
2

2
2

2
2

2
2

4.5 2-D Beam Element with combined loading Bending, Axial,
and Torsion (θ = 0)

The torsional loads are m1x and m2x, and the corresponding deflections are,
x1φ and x2φ

The torsional structural equation is:

 m1x 1 -1 φ1x
= JG/L

 m1x -1 1 φ2x

A Handbook on Computer Aided Design 4-14

FEA
Chapter 4 Beam Element

These terms can be superimposed on the stiffness equation derived previously for the
combined bending and axial loads.

 dy

φy
3-D Beam Element: dx

φz φx
 dz

A 3-D beam element has 6 DOF at each node, and 12 DOF for each element. The
stiffness matrix can be derived by super-imposing the axial, bending, and torsion loadings
in the XY, XZ, and YZ planes. The equation is,

A Handbook on Computer Aided Design 4-15

FEA
Chapter 4 Beam Element

^

2

^

2

^

2

^

2

^

2

^

2

^

1

^

1

^

1

^

1

^

1

^

1 zyxzyxzyxzyx dddddd φφφφφφ

−

−

−

−

−−−

−

−

−

−

−−−

−

−

=

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
GJ

L
GJ

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
AE

L
AE

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
GJ

L
GJ

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
AE

L
AE

K

zzzz

yyyy

yyyy

zzzz

zzzz

yyyy

yyyy

zzzz

400060200060

0
4

0
6

000
2

0
6

00

0000000000

0
6

0
12

000
6

0
12

00

60001206000120

0000000000

200060400060

0
2

0
6

000
4

0
6

00

0000000000

0
6

0
12

000
6

0
12

00

60001206000120

0000000000

22

22

2323

2323

22

22

2323

2323

A Handbook on Computer Aided Design 4-16

APPENDIX A

Matrices

Introduction

• FEA solves structural problems by defining its behavior in terms of differential
equations. These equations are converted into a set of linear algebraic equations,
which are represented in the form of matrix equations.

• Matrix equations are easy to solve with computers, and therefore it’s important to
understand the matrix algebra.

• We must always remember that when we solve matrix equations, we are, in fact,
solving the simultaneous algebraic equations (and the differential equations) of the
structure.

• Since all the FEA calculations are based on matrix algebra, it’s important to
understand the matrix operations: addition, subtraction, multiplication, inversion,
transpose, etc.

Relationship between Algebraic and Matrix equations

a11x11 + a12x2 + a13x3 = b1
a21x11 + a22x2 + a23x3 = b2 (A)
a31x11 + a32x2 + a33x3 = b3

a11 a12 a13 x1 b1
a21 a22 a23 x2 = b2 or [A] {x} = {b} (B)
a31 a32 a33 x3 b3

• Equations (A) & (B) represents the same system of equations.

Transpose Matrix

 3 8
Let [A] = 5 2 then

 6 3

 [A]T = 3 5 6 The rows & column position of elements is interchanged.
 8 2 3

1

Also, [AB]T = [B]T [A]T

Orthogonal Matrix

Orthogonal matrix is a square matrix. For an orthogonal matrix, the inverse of the matrix
is equal to it’s transpose, thus,

 [A]-1 = [A]T

Also [A][A]-1 = [I]

 [AT][A] = [I]

[A][AT] = [I] Thus,

a11 a12 a13 a11 a21 a31
a21 a22 a23 a12 a22 a32 = [I]
a31 a32 a33 a13 a23 a33

Matrix partitioning

Matrix partitioning is the sub division of a matrix into several smaller matrices, called
submatrices.
• In FEA, a matrix is usually partitioned into two or four submatrices.
• A matrix is partitioned so that the number of columns to the left of the vertical

partition in the coefficient matrix equals the number of rows above the horizontal
partition.

• The submatrices can be manipulated with matrix operations in the same manner as
the original matrix.

EX:
 a11 a12 a13 x1 b1
 a21 a22 a23 x2 = b2
 a31 a32 a33 x3 b3

 A11 A12 X1 = B1
 A21 A22 X2 B2

 [A11] {X1}+ [A12] {X2} = [B1]
 [A21] {X1} + [A22] {X2}= [B2]

2

• The advantage of partitioning a matrix is that the resulting sub matrices can be
manipulated with matrix operations in the same way as the original.

• The ability to deal with a system of equations, either as one matrix equation or two
matrix equations provides a convenient means for solving an equation system when
some of the unknowns are in the force vector [B] and the remainder are in the
displacement vector X.

• This is frequently the case when applying the FEA method to structures, where the
number of algebraic equations is very large and contains unknown forces.

Inverse Matrix

 [A] [A-1] = [I]
 [A-1] is the inverse of matrix [A].

The equation [A][X] = [B] is solved by pre-multiplying the L.H.S with A-1, thus

 [A-1][A][X] = [A-1][B]
or [X] = [A-1][B]

* [A] must be a square matrix. Non-square matrix cannot be inverted.

Orthogonal Matrix

If A-1 = AT, the matrix [A] is called an orthogonal matrix.

Determinants

The determinant of a square matrix is a single number, a scalar quantity. Its symbol is

det[A] or A

Example:

 det[A] = a11 a12 = (a11)(a22)-(a12)(a21)
 a21 a22

Sub-matrix solution procedure:

3

• In FEA, generally, some of the displacements and most of the forces are known and
the structural matrix equation is best solved by partitioning it.

• The rows and columns of the stiffness matrix are arranged so that the known forces
and known displacements are placed in submatrices.

Example:

 K11 K12 K13 K14 K15 q1 f01
K21 K22 K23 K24 K25 q02 f2

 K31 K32 K33 K34 K35 q3 = f03
 K41 K42 K43 K44 K45 q04 f4
 K51 K52 K53 K54 K55 q5 f05

• The displacements and the forces with subscript ‘0’ are known. [q02, q04 & f01, f03, f05]

• Before partitioning, the rows of matrix K are rearranged so that the known forces are
grouped in the first three rows, as shown below.

 K11 K12 K13 K14 K15 q1 f01
 K31 K32 K33 K34 K35 q02 f03
 K51 K52 K53 K54 K55 q3 = f05
 K21 K22 K23 K24 K25 q04 f2
 K41 K42 K43 K44 K45 q5 f4

Next, the columns of the K matrix are rearranged so that the unknown displacements are
grouped on the top.

• Note that, the validity of the algebraic equations represented by the matrix equations
is maintained only if the change in position of q values is compensated by swapping
the corresponding columns in the K matrix.

• We will change the order of displacements to:

 q1
 q3

 q5
 q02
 q04

Therefore, we must swap the columns in K matrix as:
Column 1: unchanged
Column 2: Replace by column 3
Column 3: Replace by column 5
Column 4: Replace by column 2
Column 5: Replace by column 4

4

The final matrix eqn. is

 K11 K13 K15 K12 K14 q1 f01
 K31 K33 K35 K32 K34 q3 f03
 K51 K53 K55 K52 K54 q5 = f05
 K21 K23 K25 K22 K24 q02 f2
 K41 K43 K45 K42 K44 q04 f4

Now we can partition the matrix as shown. The submatrices can be written as

 Kff Kfs qf Fo
 Ksf Kss qo = Fs

 [Kff] {qf} + [Kfs] {qo} = Fo (1)
[Ksf] {qf} + [Kss] {qo} = Fs (2)

The equations can be solved for qf & Fs as

{qf} = [Kff
-1] ({Fo} – [Kfs] {qo})

{Fs} = [Ksf]{qf} + [Kss]{qo}

5

	1. INTRODUCTION
	CHAPTER 1
	INTRODUCTION
	Components of Computer Aided Design
	Components of Computer Aided Manufacturing
	1.4 Concurrent Engineering
	1.5 CAD/CAM History
	1.6 CAD Hardware
	
	CAD PLATFORMS

	MAINFRAME WORKSTATIONS PCs

	2. 2D_TRANSFORMATION
	CHAPTER 2
	TWO-DIMENSIONAL TRANSFORMATION
	2.1 Introduction
	2.3 Basic Modeling Transformations
	2.4.1 Uniform Scaling

	2.5 Homogeneous Coordinates
	Example 1: If the triangle A(1,1), B(2,1), C(1,3) is scaled by a factor 2, find the new coordinates of the triangle.
	Solution: Writing the points matrix in homogeneous coordinates, we have
	
	
	
	
	Original

	Note that the new coordinates represent the original value times the scale factor. The old and the new positions of the triangle are shown in the figure.
	2.6 Translation Transformation

	Example 2: Translate the rectangle (2,2), (2,8), (10,8), (10,2) 2 units along x-axis and 3 units along y-axis.
	Solution: Using the matrix equation for translation, we have
	2.7 Rotation

	2.7.1 Derivation of the Rotation Transformation Matrix
	
	
	2.7.2 Rotation of an Object about an Arbitrary Axis

	Example 3: Rotate the rectangle (0,0), (2,0), (2, 2), (0, 2) shown below, 300 ccw about
	(0,0) (2,0)
	Solution: Centroid of the rectangle is at point (1, 1). We will first translate the centroid to the origin, then rotate the rectangle, and finally, translate the rectangle so that the centroid is restored to its original position.
	
	
	
	Example 4: Given the triangle, described by the homogeneous points matrix below, scale it by a factor 3/4, keeping the centroid in the same location. Use (a) separate matrix operation and (b) condensed matrix for transformation.
	Solution

	Example 5: Rotate the rectangle formed by points A(1,1), B(2,1), C(2,3), and D(1,3) 300 ccw about the point (3,2).
	Solution: We will first translate the point (3,2) to the origin, then rotate the rectangle about the origin, and finally, translate the rectangle back so that the original point is restores to its original position (3,2). The new coordinates of the r

	3. 3_D_TRANSFORMATION
	CHAPTER 3
	THREE-DIMENSIONAL TRANSFORMATION
	Three-dimensional Scaling Example
	Solution: The new coordinates of the cube are found by the product of the points matrix and the scaling matrix,
	Example 2: The points matrix for a wedge is given as follows. Rotate the wedge 300 ccw around the x-axis and then 450 cw around the y-axis. The points matrix is,
	Solution: First, we will rotate the wedge around the x-axis, and then about the y-axis.
	x
	(0,0,0)
	z
	Solution: We will make use of the seven-step procedure outlined above and write the applicable transformation matrix in each step. After we have generated all the transformation matrices, we will solve for the new coordinates of the rectangle at the end

	4. CURVES
	CHAPTER 4
	CURVES
	A wireframe model – Model of a Solid object with
	Non-ParametricParametric
	4.4.2 Conic Sections or Conic Curves
	Solution: Here, n = 2 and x0 =1, y0 = 1, x1 = 2, y1 = 2, etc. The polynomial is of a second degree. Expanding the Lagrange equation, we get,
	4.5.3 Hermite Cubic Spline
	4.6.2 Bezier’s Polynomial Equation
	Relationship between end-points and curve slope

	4.6.3 Third Order Bezier Polynomial
	4.6.4 Blending Two or More Bezier Curves

	5. SURFACES
	CHAPTER 5
	SURFACES
	
	
	
	
	Computer generated surfaces play a very important part in manufacturing of engineering products. A surface generated by a CAD program provides a very accurate and smooth surface, which can be generated by NC machines without any room for misinterpretatio
	
	5.3 Interpolated Surfaces – Bilinear Surface

	Application of Bilinear Surfaces
	Drawbacks of Bilinear Surfaces
	
	Applications
	Coons surface is easy to create, and therefore, many 2-D CAD packages utilize it for generating models. However, it has only a limited application since the surface is inflexible and cannot create very smooth surfaces. It would be very difficult to produ
	Linearly Sweeped Surfaces
	5.6 Revolved Surfaces (Circular Sweep)
	Example
	Solution
	Example
	Generate a Torus by rotating a circle of radius r and the center at (a,0,0) about the z-axis.
	
	Solution

	Solution
	Example
	Solution

	5.9 Creating a Surface by Sweeping a polygon
	Solution:

	5.11 Bezier Surface

	6. SOLIDS
	CHAPTER 6
	SOLID MODELING
	Linear sweep – Creating a box by sweeping a recta

	Chapter_1_ Introduction
	CHAPTER 1
	An Overview of the Finite Element Analysis
	Step1: Pre-process or modeling the structure
	Step 2: Analysis

	Step 3: Post processing
	The above described software procedure is mostly
	Discretization or Division of a structure into small elements
	
	
	
	Plate with a hole

	NOTES

	Chapter_2_The_Basic_FEA_Procedure
	CHAPTER 2
	
	
	
	
	The Basic FEA Procedure

	2.3.1 Procedure for Assembling Element stiffness matrices
	2.3.2 Force matrix
	2.3.3 Boundary conditions
	Example 2.2
	Solution
	Step 1: Derive the Element Equations
	Step 2: Assemble element equations into a global equation
	Step 3: Solve for deflections

	Example 2.3
	Step 1: Find the Element Stiffness Equations
	Step 2: Find the Global stiffness matrix
	Step 3: Solve for Deflections

	Example 2.4
	
	Example 2.5
	Solution
	Example 2.6
	Solution
	
	
	Beam sectionsEquivalent spring elements
	Figure 2.8

	Cross-sectional area
	Figure 2.9Figure 2.10

	Stiffness
	Element Stiffness Equations

	Chapter_3_Truss_Elements
	CHAPTER 3
	Truss Element

	-Trusses
	
	
	
	
	
	
	Truss Elements
	Figure 3.2 A Truss Element

	Solution
	Find the stiffness matrix for each element
	u2u6
	Element (1)
	c = cos(= 1,c2 = 1
	Element 2
	s = cos 600 = .5, s2 = 0.25

	Assembling the stiffness matrices
	
	
	
	
	
	
	Boundary conditions
	Sress, Strain and deflections
	Element (3)
	Factor of Safety
	Final Notes
	y
	Example 21(1)2

	3 4 x
	
	
	
	
	
	
	Solution
	Element 3 u4

	Chapter_4_Beam_Element
	CHAPTER 4
	Beam Element
	
	
	
	
	Example 1
	Solution

	4.3 Beam Element with Combined Bending and Axial loads
	
	
	
	
	
	
	4.3.1 Stiffness matrix of a beam element with bending and axial loads in local coordinates

	APPENDIX A - Matrix Algebra
	APPENDIX A
	Matrices
	Introduction
	Relationship between Algebraic and Matrix equations
	Transpose Matrix

	Let [A] = 5 2 then
	
	
	
	
	
	Orthogonal Matrix

	Matrix partitioning
	Inverse Matrix
	Orthogonal Matrix
	Determinants

	K51 K52 K53 K54 K55 q5 f05
	K41 K42 K43 K44 K45 q5 f4
	K41 K43 K45 K42 K44 q04 f4
	The equations can be solved for qf & Fs as

	Blank Page

